1 / 20

NLO QCD analysis of single-diffractive dijet production at the Tevatron

NLO QCD analysis of single-diffractive dijet production at the Tevatron. Michael Klasen (LPSC Grenoble) in collaboration with G. Kramer (U Hamburg) April 20, 2010 Phys. Rev. D 80 (2009) 074006. Publications. With G. Kramer PLB 508 (2001) 259: g p  2 jets+n

rusti
Download Presentation

NLO QCD analysis of single-diffractive dijet production at the Tevatron

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. NLO QCD analysis of single-diffractive dijet production at the Tevatron Michael Klasen (LPSC Grenoble) in collaboration with G. Kramer (U Hamburg) April 20, 2010 Phys. Rev. D 80 (2009) 074006

  2. Publications • With G. Kramer • PLB 508 (2001) 259: g p  2 jets+n • EPJC 38 (2004) 39: g p  2 jets+p • PRL 93 (2004) 232002: g*p  2 jets+p • JPG 31 (2005) 1391: New fact. scheme • EPJC 49 (2007) 957: g(*)p 2 jets+n • MPLA 23 (2008) 1885: Review (HERA data) • PRD 80 (2009) 074006: p p  2 jets+p _ _ Michael Klasen, LPSC Grenoble

  3. Motivation • Diffractive Higgs production: • Clean central events, similar to vector-boson fusion • Easier identification of h  gg than in incl. Higgs production • Relies on understanding of pomeron flux / parton densities • Factorization breaking in single-diffractive dijets: • For photoproduction established only at NLO • Direct vs. resolved, x-dependence of S still under discussion • For hadroproduction established already at LO • Thorough NLO analysis was missing since Y2K !! Michael Klasen, LPSC Grenoble

  4. Definition of the SD / ND cross sections • Hadronic cross section: • Non-diffractive PDFs: • CTEQ6L1 / CTEQ6.6M • Diffractive PDFs: • H1 2006 fit A, B • H1 2007 fit jets (no f.b.!) • MY < 1.6 GeV • 1.15largerthanZEUSLPS Michael Klasen, LPSC Grenoble

  5. Experimental cuts by CDF PRL84(2000)5043: • s = 1800 GeV • Run IC (95-96), RPS • |t| < 1 GeV2 • 0.035 < x < 0.095 • R = 0.7, Rsep = 1.3R • ET 1,2 > 7 (6.5) GeV • |h| < 4.2 MK and G. Kramer, PLB 366 (1996) 385 Michael Klasen, LPSC Grenoble

  6. Experimental cuts by CDF PRL84(2000)5043: • s = 1800 GeV • Run IC (95-96), RPS • |t| < 1 GeV2 • 0.035 < x < 0.095 • R = 0.7, Rsep = 1.3R • ET 1,2 > 7 (6.5) GeV • |h| < 4.2 PRL88(2002)151802: • s = 630 and 1800 GeV • Run IC (95-96)  UA8 • |t| < 0.2 GeV2 • 0.035 < x < 0.095 • R = 0.7, Rsep = 1.3R • ET > 10 GeV • |h| < 4.2 _ MK and G. Kramer, PLB 366 (1996) 385 Michael Klasen, LPSC Grenoble

  7. Observables derived from sJJ(th)/NJJ(exp) • Parton momentum fraction in antiproton, pomeron: • directly from jets, but in convolution • Ratio of SD to ND cross sections: • Integrated over ET 1,2 and h1,2 with xp fixed • Integrate also over t and x ranges, assume similar Q2 ≈ ET2 • Naive estimate of non-diffractive structure function: • (t-channel gluon exchange) • GRV 98 LO, <Q2> = 75 GeV2(<ET> ≈ 8.7 GeV) • Diffractive structure function: • Weak dependence on x Use <x> = 0.063 _ _ _ Michael Klasen, LPSC Grenoble

  8. Average transverse-energy distribution Non-diffractive (ND): Single-diffractive (SD): _ <ET> ≈ 8.7 GeV Michael Klasen, LPSC Grenoble

  9. Average rapidity distribution Non-diffractive (ND): Single-diffractive (SD): large xp _ small xp _ Michael Klasen, LPSC Grenoble

  10. Parton momentum fraction in anti-proton Ratio SD/ND: Suppression factor: NLO≈LO, x-dependent Michael Klasen, LPSC Grenoble

  11. Parton momentum fraction in pomeron Diffr. structure function: Suppression factor: <x> = 0.063 GRV98LO <Q2>=75 GeV2 weaker b-dependence Michael Klasen, LPSC Grenoble

  12. Average transverse-energy distribution Non-diffractive (ND): Single-diffractive (SD): Michael Klasen, LPSC Grenoble

  13. Average rapidity distribution Non-diffractive (ND): Single-diffractive (SD): Perfect! Michael Klasen, LPSC Grenoble

  14. Energy dependence of ratio SD/ND Michael Klasen, LPSC Grenoble

  15. Energy dependence of suppression factor Michael Klasen, LPSC Grenoble

  16. Energy dependence of diffr. structure fct. <x> = 0.063 GRV98LO <Q2>=75 GeV2 <x> = 0.063 GRV98LO <Q2>=75 GeV2 Michael Klasen, LPSC Grenoble

  17. Energy dependence of suppression factor Michael Klasen, LPSC Grenoble

  18. Pomeronmomentumfractioninantiproton • Published in PRL 88 • AgreeswithPRL84data:   taken at b=0.1 • Weak x-dependence <x>=0.063 not bad • Also observed in (N)LO H1pomeronfluxfact. Michael Klasen, LPSC Grenoble

  19. Double Pomeron exchange: Survival probability: Opacity / optical density: Ki = 1  g Kaidalov et al., EPJC 21 (2001) 521 Fit stot, dsel./dt to ISR, SppS, Tevatron data Total cross section: Determines (gIPpp)2 =25mb Starting scale s0 = 1 GeV2 Large distance physics: D = 0.1 Elastic amplitude: Pomeron trajectory: a(t) = 1 + a’ t + D Small distance physics: a’ = 0.15 GeV-2 Pomeron vertex in b-space: B = B0/2 + a’ ln (s/s0) Elastic slope: B0 = 8 GeV-2 pN* transition probability: g = 0.4 Survival probability: S ≈ 0.1 Small abs./size: Val., large xp, small b Large abs./size: Sea, small xp, small b Two-Channel Eikonal Model Michael Klasen, LPSC Grenoble

  20. Conclusion • LO analysis by CDF was very crude: • Cone algorithm, equal ET cuts [in PRL 84 (2000) 5043] • Proton PDFs, Q2 dependence and systematic errors cancel • Integrations over x and t don´t matter • Structure function ≈ t-channel gluon exchange • Still, NLO analysis confirms main conclusions: • SD/ND K-factors of 1.6 (630 GeV) and 1.35 (1800 GeV) • Partially compensated by exact ratios of NLO cross sections • Suppression factor is x-dependent, in particular at small x • Predicted by LO two-channel eikonal model  valence/sea • Less dependence on b, at NLO, 630 GeV, with H1 2007 jets Michael Klasen, LPSC Grenoble

More Related