230 likes | 318 Views
Diffractive Dijet Photoproduction. Michael Klasen LPSC Grenoble April 28, 2005. Publications. With G. Kramer PLB 508 (2001) 259: g p 2 jets+n EPJC 38 (2004) 39: g p 2 jets+p PRL 93 (2004) 232002: g * p 2 jets+p + 1 paper in preparation.
E N D
Diffractive Dijet Photoproduction Michael Klasen LPSC Grenoble April 28, 2005
Publications • With G. Kramer • PLB 508 (2001) 259: g p 2 jets+n • EPJC 38 (2004) 39: g p 2 jets+p • PRL 93 (2004) 232002: g*p 2 jets+p + 1 paper in preparation Michael Klasen, LPSC Grenoble
Hard diffraction: Does factorization hold? Deep inelastic scattering: Yes Direct photoproduction Hadroproduction: No Resolved photoproduction Why next-to-leading order? stot =sdir(xg,Mg)+sres(xg,Mg) AtLOxg=1,butatNLOxg1 log(Mg)-dependence cancels Diffr. hadroproduction of dijets: CDF Coll., PRL 84 (2000) 5043 Motivation Michael Klasen, LPSC Grenoble
Higgs Production at the LHC MH = 120 GeV – V. Khoze, A. Martin, A. Roeck, M. Ryskin, EPJC 25 (2002) 391 Michael Klasen, LPSC Grenoble
Diffractive Higgs Production V. Khoze, A. Martin, M. Ryskin, EPJC 26 (2002) 229 Michael Klasen, LPSC Grenoble
Diffractive processes at HERA: H1 Coll., EPS 2003 and DIS 2004 Inclusive DIS: Diffractive DIS: Experimental cuts: Kinematics Michael Klasen, LPSC Grenoble
Double factorization: G. Ingelman, P. Schlein, PLB 152 (1985) 256 Hard QCD factorization: Regge factorization: Pomeron flux factor: Pomeron tracectory: Diffractive Parton Distributions Michael Klasen, LPSC Grenoble
Diffractive deep inelastic scattering: J.C. Collins, PRD 57 (1998) 3051 Light cone coordinates: qm = (q+,q-,qT) Leading regions: H: qm O(Q) J: lm (0,Q/2,0T) A: |km|« O(Q) Soft gluon attachments: Poles in k+-plane: Finalstate: Upper half-plane Initial state: Lower half-plane Proof of Hard Factorization Michael Klasen, LPSC Grenoble
Direct photoproduction: Modify the Regge trajectory Resolved photoproduction: Factorization breaking Multipomeron Exchanges X X Michael Klasen, LPSC Grenoble
Diffractive Photoproduction of Dijets Cross section: Photon flux: Weizsäcker-Williams approximation Michael Klasen, LPSC Grenoble
y-dependence: Photon flux Small correlations due to exp. cuts xIP-dependence: Pomeron flux Subleading Reggeon contribution Factorizable Multipomeron Exchanges Michael Klasen, LPSC Grenoble
Hadronic collisions: Survival probability: Opacity / optical density: Ki = 1 g Kaidalov et al., EPJC 21 (2001) 521 Photoproduction: Generalized vector meson dominance: JPC= 1--: g r, w, … Fittedparameters(W = 200 GeV): Total cross section:stot (rp)=34mb Pomeron slope: B = 11.3 GeV-2 Transition probability: g = 0.6 ZEUS Coll., EPJ C2 (1998) 247 H1 Coll., EPJ C13 (2000) 371 Survival probability: R |S|2 0.34 Kaidalov et al., PLB 567 (2003) 61 Two-Channel Eikonal Model Michael Klasen, LPSC Grenoble
xg-dependence: Direct/resolved photons At LO, R = 1 agrees better with data! zIP-dependence: Gluon density in pom. Smaller uncertainties in 1/s ds/dzIP No Sign of Factorization Breaking at LO Michael Klasen, LPSC Grenoble
xg-dependence: Direct/resolved photons Large K-Factor Survival probability zIP-dependence: Gluon density in pom. Reduced scale uncertainties at NLO Non-FactorizableMultipomeronExchanges Michael Klasen, LPSC Grenoble
But: Data also support direct suppression! Michael Klasen, LPSC Grenoble
Inclusive photoproduction: MK, Rev. Mod. Phys. 74 (2002) 1221 Diffractive photoproduction: MK, G. Kramer, EPJC 38 (2004) 39 Factorization Scale Dependence Michael Klasen, LPSC Grenoble
Hadronization Corrections Observable and model dependent! Michael Klasen, LPSC Grenoble
Importance of large ET: Direct process dominates IS singularity less important Hadronization corrections small Experimentallydirectlyaccessible Less sensitive than xg Result: Suppressed result agrees Unsuppressed 50% too low How can we learn more? Critical role of IS singularity Transition from gp to DIS ET-Distribution Michael Klasen, LPSC Grenoble
Q2-dependence: MK, G. Kramer, PRL 93 (2004) 232002 zIP-dependence: MK, G. Kramer, PRL 93 (2004) 232002 High- to Low-Q2 Transition in DIS Michael Klasen, LPSC Grenoble
Factorization Scale Dependence MK, G. Kramer, to appear Michael Klasen, LPSC Grenoble
Q2-dependence: MK, G. Kramer, to appear zIP-dependence: MK, G. Kramer, to appear Factorization Scheme Dependence Michael Klasen, LPSC Grenoble
Components of Parton Densities in Photon • SaS parameterizations allow for separation: • Anomalous component: Resummation of IS singularity • Hadronic component: Vector meson dominance model • VMD component suppressed: • 10-4 for Q2 70 GeV2 • 10-2 for Q25 GeV2 • Anomalous component dominates: • Direct higher order contributions • Known from inclusive low-Q2 production Michael Klasen, LPSC Grenoble
Conclusions Hard diffraction: Factorizable or not? • Deep inelastic scattering: Yes Diffractive parton densities • Hadronic scattering: No Multipomeron exchanges • Important application: Diffractive Higgs production at LHC Diffractive photoproduction of dijets: Initial state singularity at NLO • Direct / resolved photoproduction: xg and Mg dependence • (Non-) factorizable multipomeron exchanges Two-channel eikonal model: • Generalized vector meson dominance: g r, w, … • Rapidity gap survival probability: R = 0.34 Related process: • Leading neutron with p-exchange (NB: fq/p, not fg/IP!) Michael Klasen, LPSC Grenoble