1 / 31

CSCI 3130: Automata theory and formal languages

Fall 2011. The Chinese University of Hong Kong. CSCI 3130: Automata theory and formal languages. DFA minimization. Andrej Bogdanov http://www.cse.cuhk.edu.hk/~andrejb/csc3130. Example. L = { w : w ends in 111 }. Isn ’ t there a smaller one?. Smaller DFA.

rustyc
Download Presentation

CSCI 3130: Automata theory and formal languages

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fall 2011 The Chinese University of Hong Kong CSCI 3130: Automata theory and formal languages DFA minimization Andrej Bogdanov http://www.cse.cuhk.edu.hk/~andrejb/csc3130

  2. Example L = {w: w ends in 111} Isn’t there a smaller one?

  3. Smaller DFA L = {w: w ends in 111} 0 1 1 1 1 q0 q1 q2 q3 0 0 0 Can we do it with 3 states?

  4. Even smaller DFA? • Suppose we had a 3 state DFA for L • There are 4 inputs but 3 statesOn two of these inputs M ends in the same state L = {w: w ends in 111} M inputs: e, 1, 11, 111

  5. Pigeonhole principle Suppose you are tossing 4 balls into 3 bins. Then two balls end up in the same bin. Take 4 inputs and feed them into a 3 state DFA. Then two inputs end up in the same state.

  6. A smaller DFA • Suppose inputs x = 1, y = 11 lead to same state • Then after reading one more1 • The state of x1 = 11 should be rejecting • The state of y1 = 111 should be accepting L = {w: w ends in 111} 1 1, 11 M 11, 111 inputs: e, 1, 11, 111 “ends in 111” ✘

  7. A smaller DFA • Suppose inputs x = e, y = 1 lead to same state • Then after reading 11 • The state of x1 = 11 should be rejecting • The state of y1 = 111 should be accepting L = {w: w ends in 111} 1 e, 1 M 11, 111 inputs: e, 1, 11, 111 ✘

  8. 0 1 1 1 1 q0 q1 q2 q3 0 0 0 No smaller DFA! • After looking at all possible pairs (x, y)we conclude that • So, this DFA is minimal (e, 1) (e, 11) (e, 111) (1, 11) (1, 111) (11, 111) There is no DFA with 3 states for L

  9. 0 1 1 1 1 q0 q1 q2 q3 0 0 0 DFA minimization 0 0 q000 1 0 q00 1 q001 q0 1 … 0 q01 … qe 1 q101 q10 0 … 1 q1 … 1 q11 1 q111 1 We now show how to turn any DFA for L into the minimal DFA for L

  10. Minimal DFAs and distinguishable states • First, we have to understandminimal DFAs: reject accept 0 1 1 1 1 q0 q1 q2 q3 0 0 0 every pair of states is distinguishable minimal DFA

  11. Distinguishable states • Two states q and q’ are distinguishable if accept w1 w2 wk-1 wk … q reject w1 w2 wk-1 wk … q’ on the same continuation string w1w2...wk, one accepts, but the other rejects

  12. Examples of distinguishable states 1 0 1 1 0 1 q0 q1 q2 q3 0 0 (q0, q1) distinguishable by 01 (q0, q2) distinguishable by 1 (q0, q3) distinguishable by e DFA is minimal (q1, q2) distinguishable by 1 (q1, q3) distinguishable by e (q2, q3) distinguishable by e

  13. q2 q2 0 0 q0 0 0, 1 0, 1 q01 1 1 q1 1 q3 q3 0, 1 0, 1 Examples of distinguishable states (q0, q3) distinguishable by e (q1, q3) distinguishable by e indistinguishable pairs can be merged (q2, q3) distinguishable by e (q1, q2) distinguishable by 0 (q0, q2) distinguishable by 0 (q0, q1) indistinguishable

  14. Examples of distinguishable states 0 q2 q0 0, 1 0, 1 q23 q01 1 0, 1 0, 1 q3 q1 0, 1 (q0, q2) distinguishable by e (q1, q2) distinguishable by e (q0, q3) distinguishable by e (q1, q3) distinguishable by e (q0, q1) indistinguishable (q2, q3) indistinguishable

  15. Finding (in)distinguishable states If q is accepting and q’ is rejectingMark(q, q’) as distinguishable (x) Rule 1: x q’ q x q1 q1’ If (q1, q1’) are marked,Mark(q2, q2’) as distinguishable (x) a a Rule 2: x q2 q2’ Unmarked pairs are indistinguishable Merge them into groups Rule 3:

  16. Example of DFA minimization 0 q0 0 q00 q1 q0 1 0 1 q00 q01 0 qe 1 0 q01 q10 0 1 1 q10 q1 0 1 q11 q11 qe q0 q1 q00 q01 q10 1

  17. Example of DFA minimization 0 q0 0 q00 q1 q0 1 0 1 q00 q01 0 qe 1 0 q01 q10 0 1 1 q10 q1 0 1 q11 q11 x x x x x x qe q0 q1 q00 q01 q10 1  q11 is distinguishable from all other states

  18. Example of DFA minimization 0 q0 0 q00 0 q1 1 q0 1 0 1 q00 q01 0 qe 1 0 q01 q10 0 1 1 q10 q1 0 1 q11 q11 x x x x x x qe q0 q1 q00 q01 q10 1  Look at pair qe, q0 Neither (q0, q00) nor (q1, q01) are distinguishable

  19. Example of DFA minimization 0 q0 0 q00 x q1 q0 1 0 1 q00 q01 0 qe 1 0 1 0 q01 q10 0 1 1 q10 q1 0 1 q11 q11 x x x x x x qe q0 q1 q00 q01 q10 1  Look at pair qe, q1 (q1, q11) is distinguishable

  20. Example of DFA minimization 0 q0 0 q00 q1 x x q0 1 0 1 q00 x q01 0 qe 1 0 x x x q01 q10 0 1 1 x x q10 q1 0 1 q11 q11 x x x x x x qe q0 q1 q00 q01 q10 1  After going thru the whole table once Now we make another pass

  21. Example of DFA minimization 0 q0 0 q00 0 q1 x x 1 q0 1 0 1 q00 x q01 0 qe 1 0 x x x q01 q10 0 1 1 x x q10 q1 0 1 q11 q11 x x x x x x qe q0 q1 q00 q01 q10 1  Look at pair qe, q0 Neither (q1, q00) nor (q1, q01) are distinguishable

  22. Example of DFA minimization 0 q0 0 q00 q1 x x q0 1 0 0 1 q00 x q01 0 1 qe 1 0 x x x q01 q10 0 1 1 x x q10 q1 0 1 q11 q11 x x x x x x qe q0 q1 q00 q01 q10 1  Look at pair qe, q00 Neither (q0, q00) nor (q1, q01) are distinguishable

  23. Example of DFA minimization 0 q0 0 q00 q1 x x q0 1 0 1 q00 x q01 0 qe 1 0 x x x q01 q10 0 1 1 x x q10 q1 0 1 q11 q11 x x x x x x qe q0 q1 q00 q01 q10 1  In the second pass, nothing changes So we are ready to apply Rule 3

  24. Example of DFA minimization q0 q00 q1 x x q0 q00 x q01 qe x x x q01 q10 x x q10 q1 q11 q11 x x x x x x qe q0 q1 q00 q01 q10  Merge unmarked pairs into groups

  25. Example of DFA minimization q0 A q00 q1 x x q0 A q00 A A x q01 qe x x B x q01 q10 A A x A x q10 q1 B q11 q11 x x x x x x C qe q0 q1 q00 q01 q10  Merge unmarked pairs into groups

  26. Example of DFA minimization 0 q0 A 0 q00 q1 x x q0 1 A 0 1 q00 A A x q01 0 qe 1 0 x x B x q01 q10 0 1 1 A A x A x q10 q1 0 1 B q11 q11 x x x x x x C qe q0 q1 q00 q01 q10 1 0 1 1 minimized DFA: qA qB qC 1 0 0

  27. Example of DFA minimization How do we know this DFA is minimal? qB 1 0 Answer: All pairs are distinguishable qC e e 1 1 qA qB qC 1 qA qB 0 0

  28. Why it works • Why do we end up finding all distinguishable pairs? w1 w2 wk-1 wk … q x x x x w1 w2 wk-1 wk … q’ Because we work backwards

  29. Why it works • Why are there no inconsistencies when we merge? B q5 w a A q2 q3 q1 q7 a C w q6 Because we only merge indistinguishable states

  30. Why it works • Why is there no smaller DFA? Suppose there is By the pigeonhole principle this must happen: M smaller DFA M’ v q q” v, v’ v’ q’

  31. Why it works • Why is there no smaller DFA? But then M smaller DFA M’ v w q q” w ? v, v’ v’ q’ w Every pair of states is distinguishable q” cannot exist!

More Related