1 / 83

Avelino Corma ITQ - Valencia

2 nd FEZA School. “Industrial Applications of Zeolites, and the Relevance of Preparing Well Defined and Characterized Materials”. Avelino Corma ITQ - Valencia. CATALYST EUROPEAN MARKET (Billion $). YEAR. FIELD. CHEMISTRY. Car, Polymer,. (From intermediate to Fine. Refining and. Ch.

ryan-franks
Download Presentation

Avelino Corma ITQ - Valencia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2nd FEZA School “Industrial Applications of Zeolites, and the Relevance of Preparing Well Defined and Characterized Materials” Avelino Corma ITQ - Valencia

  2. CATALYST EUROPEAN MARKET (Billion $) YEAR FIELD CHEMISTRY Car, Polymer, (From intermediate to Fine Refining and Ch emistry) Environmental 1998 0.9 2.8 2001 1.0 3.2 2005 1.3 3.7

  3. STEPS IN A HETEROGENEOUS CATALYTIC REACTION • Diffusion of Reactants in the Pores • Adsorption of Reactants on the Surface • Reaction of Adsorbed Products in the Pores • Desorption of Products from the Surface • Diffusion of Products Out of Pores

  4. Peculiarities of Zeolites and Zeotypes of Interest in Catalysis • High Surface Area • Molecular dimensions of the pores: Molecular Sieves • High adsorption capacity: Concentration effect • Possibility for controlling number and strength of active sites • Preactivation of molecules in the pores: Strong electric fields, molecular confinement.

  5. Zeolite LTA Pure Silica (ITQ-29)

  6. Adsorption Properties of ITQ-29 compared with other zeolites

  7. ITQ-32 zeolite containing 8R and 12R pores Pore volume (0.16 cm3/g) and pore apertures 3.5 x 4.3 Ǻ and can be prepared as a nearly pure silica zeolite and as aluminosilicate. In the latest case, acidic properties are developed Cantín et al. JACS

  8. 6 Temperature = 25ºC Pressure = 300 mbar propene 5 4 3 Gas Adsorption (wt%) 2 1 propane 0 0 10 20 30 40 50 Time(min) Selective Gas Adsorption by ITQ-32

  9. Different types of shape selectivity in zeolite pores

  10. USY (Si/Al=35) 60 H O O 40 O 1 , 3 d i o x o l a n e ( 7 ) Yield/% 20 O H O O 1 , 3 d i o x a n e ( 8 ) 0 0 25 50 75 100 Conversion/% PHENYL ACETALDEHYDE GLYCEROL ACETAL O H O O H O H O O H O H H O O + H O H O 2 6 7 8 2 - Bencyl-4-hydroxymethyl 2 -bencyl-5-hydroxy - 1 , 3 - d i o x o l a n e - 1 , 3 - d i o x a n e “Hyacinte”

  11. ISOMERIZATION 7 TO 8 Cationic Intermediate 6.4Å 6.4 6.4 6.4 7.4Å 7.4 7.4 7.4 Å 7.4 7.4 7.4 7.4 13.6 13.6 13.6 13.6Å 12.8 12.8 12.8 12.8 6.5 6.5 6.5 6.5 Å Å Yield/% r /Ba Conversion 7/8 0 Catalyst Si/Al 4 10 / % Å 8.3 8.3 8.3 8.3 7 8 USY 35 1.80 93 58 35 1.6 Beta 15 1.45 85 57 26 2.0 12.25 12.25 12.25 12.25 Å MOR 10 0.08 33 28 5 5.6 Å 7.4 7.4 7.4 7.4 MCM - 41 50 1.70 36 26 10 2.6 ZSM - 5 40 0.34 54 46 8 7.7 Isomerization Intermediate p - TSA - 1.38 97 66 31 2.1

  12. PARADIGMA: It is not possible during catalytic cracking of gas oil to produce high yields of LCO and propylene at the same time with a single catalyst Gases (propylene) Gas oil Gasoline Diesel (LCO)

  13. Molecular Traffic Control in ITQ-33 10 MR (6.1 Å) propylene 18 MR (12.2 Å) CRACKING diesel gasoline propylene gas-oil CRACKING CRACKING propylene ITQ-33

  14. ZEOLITE ITQ-33 A. Corma, M.J. Díaz-Cabañas, J.L. Jordá, C. Martínez, M. Moliner, NATURE (2006)

  15. Catalytic cracking of Arabian light vacuum gasoil at 500ºC and 60 seconds time on stream. Yields (%) Molar ratio a b c d = = = Catalyst Conversion Diesel Gasoline C C /C iC /iC 3 3 3 4 4 (%) USY BASED 88.3 19.5 39.5 4.4 1.3 0.1 ITQ-33 BASED 86.1 23.3 25.1 9.0 3.7 1.1 aUCS = 2.432 nm, bConversion = diesel + gasoline + gases + coke; c, d Boiling points [216.1ºC-359.0ºC] and [36.0ºC-216.1ºC], respectively. A. Corma, María J. Díaz-Cabañas, José L. Jordá, C. Martínez M. Moliner, Nature (2006)

  16. POSSIBILITIES OF MOLECULAR SIEVES IN CATALYSIS • Acid Catalysts • Basic Catalysts • Redox Catalysts • Catalyst Supports – Cooperative Effects

  17. H H S i O O S i A l O O S i O O S i O S i A l S i O O S i S i A l O S i S i O S i O O S i O S i qH = 0.39 Si/Al = 3 qH = 0.40 Si/Al  7 H H A l O O A l O S i O S i O O A l A l O O S i A l S i A l O S i O S i A l O S i O O S i O S i qH = 0.37 Si/Al = 1 qH = 0.38 Si/Al = 1.7 Influence of Si/Al Ratio on the Charge Density of the Zeolitic Protons

  18. Distribution of Acid Strength Versus Aluminium per Unit Cell Al/U.C. (Y zeolite)

  19. Zeolite framework Si/Al ratio from 29Si MAS NMR

  20. B-Zeotype and Zeolite Acid Sites:Ionicity of the OH Bonds H H O O O O O O B S i A l S i O O O O O O O O QOQH = 0.422 0.457

  21. Influence of Acid Strength of Zeolites on Product Distribution: Chemoselective Friedel-Crafts Alkylations of Benzene and Furane Derivatives by Allylic Alcohols R R OH HY HY stronger sites weaker sites R R

  22. Cyclohexanone Oxime Caprolactam Nylon-6

  23. Beckmann Rearrangement: Influence of Acid Sites in Catalytic Behavior RING OPENING BECKMANN HYDROLYSIS REARRANGEMENT POLYMERIZATION OXIME Bridging Hydroxyls Internal Silanols External Silanols STRENGTH OF ACID SITES Nitriles, others -Caprolactam Cyclohexanone

  24. FLUORIDE MEDIA Synthesis with OH- Synthesis with F-

  25. Al/uc by chemical analysis Al+SiOH/uc by NMR minimum SiOH/uc 1.2 1.2 0 0.3 0.3 0 1.2 2.4 9.9 0.4 3.1 11.2 -80 -90 -100 -110 -120 -130 -140  (ppm from TMS) Comparison of calcined zeolite Beta(OH)and(F)

  26. Pure Silica Zeolite Beta Free of Connectivity Defects • Adsorption Properties • 15 g n-Hexane/100 g zeolite • < 0.1 g water/100 g zeolite • 0.22 cc/g micropore volume (N2 adsorption)

  27. PREPARATION OF CYCLIC ACETALS 2-(2-naphtyl)-2,4-dimetyl 1,3-dioxolane 2-(4-hydroxy-3-methoxy-phenyl)- 4-mtyl-1,3-diolane O O O H FLAVORS AND FRAGRANCES Vanilla O O O Blossom Orange R R O R 1 2 O O + 3 R R H 1 2 O O O H + H O O + O H 2 O R Ethyle ethylendioxyacetal acetate R R 4 3 4 R , R , R , R = H or alkyl 1 2 3 4 O H O O O H O O Hyacinte 2-bencyl-5-hydroxy 1,3-dioxane 2-bencyl-4-hydroxymethyl 1,3-dioxolane

  28. “Apple Scent” O O O O O O + H O + H , - H O O O O H + E t O H 3 2 H O O O O H 2 3 1 E G F r u c t o n e 100 20 min 100 80 Fructone (90%) Fructone (91%) 80 60 USY(13) 60 Yield/% 40 Beta(13) Yield/% 40 20 Ácid (2%) 20 Ácid (4%) 0 0 30 60 90 0 Time/min 0 25 50 75 Time/min Fructone FRUCTONE

  29. PROCESS OPTIMIZATION Reaction Conditions: I. 7.4% of catalyst, toluene reflux.II. 8 torr, 5% wt catalyst, T=40ºC. I: Toluene 100 80 II: Without solvent Yield: 94% Selectivity: 99% 60 II: Without solvent Yield/% 40 Beta (25-hydrophobic) 20 0 0 30 60 90 120 150 Time/min

  30. O H O H ArH H O ArOH + RR'CH 2 O H TS-1 + ArOH H R R 30% H O 2 2 + O R ' O H R' O O N H 3 R H O N (Clerici et al.) R Versatile Titano-Silicate, TS-1, Zeolite Oxidation Catalyst with Aqueous Hydrogen Peroxide as Oxidising Agent

  31. H O Yield % 70 50 70 2 2 Phenol Selectivity % 90 80 90 INDUSTRIAL PROCESES FOR PHENOL HYDROXYLATION WITH H2O2 PROCESS RHONE POULENC BRICHINA ENICHEM 2+ 2+ (HclO H PO ) Fe /CO (TS-1) 4 3 4 Phenol Conversion % 5 10 25 Catechol Ratio 1.4 2.3 1 Hydroquinone Tars x100 10 20 12 Tars + diphenols

  32. CHARACTERIZATION OF Ti MOLECULAR SIEVES TECHNIQUEMOSTRELEVANTINFORMATION Chemical Analysis Total Ti content. XRD Crystallinity/presence of other phases/cell parameters TEM-SEM Crystal size IR 960 cm-1 band associated to Si-O-Ti. Raman 960 and 1126 cm-1 associated to Si-O-Ti. Anatase. NMR Broadening of the 29Si signal. UV-Visible IR Ti coordination/extraframework Ti. XPS Ti dispersion. X-ray Absorption Spectros- copy (XANES-EXAFS) Geometry and coordination of Ti.

  33. PORE RESTRICTION OF TI-SI DURING OXIDATION OF ALKANES WITH H2O2. TON SUBSTRATE mol/mol-Ti Hexane 7.0 Reaction conditions: 2M Pentane 0.24 H O (30%) 10cc, 2 2 2,2 DM B 0.0 substrate = 10cc, C Hexane 0.37 Ti-Si = 1.0g, T=323K Time = 3h Heptane 4.5 Octane 0.50 Nonane 0.10 Tatsumi et al, Chem. Commun, 1990

  34. H2O2 OXIDATION WITH TI-BETA EPOXIDATION OF OLEFINS Selectivity Initial reaction 5 Olefin Catalyst rate, r x10 Epoxide H O o 2 2 (mol/mol.s) 1-Hexene Ti-Beta 3.72 3.9 93 TS-1 8.18 94.7 100 2-methyl-2-pentene Ti-Beta 6.07 0.6 92 TS-1 2.39 76.7 90 1-methyl-1-cyclohexene Ti-Beta 4.52 0.9 91 TS-1 0 - - Reaction conditions: T=50ºC, t=2h; 33 mmol olefin; H2O2 : olefin = 1:4 mol ratio; 23.6 g methanol; 0.2 g catalyst

  35. OXIDATION OF OLEFINS ON TS-1 AND Ti-Al BETA OH R3 R1 C C R4 R2 Ti-Beta O OH R3 R1 R3 R1 H2O2 C C C C TS-1 R4 R2 R4 R2 Ti-Al-Beta TS-1

  36. INFLUENCE OF THE Al CONTENT OF Ti-BETA ON EPOXIDE SELECTIVITY: STRATEGIES FOR THE PREPARATION OF CATALYSTS. • Cogel • Seeding • Fluoride Media

  37. INFLUENCE OF AL CONTENT IN Ti-BETA ON ACTIVITY AND EPOXIDE SELECTIVITY Sample Synthesis Chemical Composition TON Epoxide Method Si/Al % TiO (mol/mol Ti h) Selectivity (%) 2 BA4 OH- no 123 4.7 14.9 14.6 alkalines BC1 cogel 300 4.7 20.8 25.9 BS1 seeding 2.5 28.6 75.4 ¥ BF1 F- 2.5 32.2 96.4 ¥ 1-hexene, H2O2, CH3OH as solvent; results at 25% max. conv.

  38. Pure Silica Zeolite Beta Free of Connectivity Defects • Adsorption Properties • 15 g n-Hexane/100 g zeolite • < 0.1 g water/100 g zeolite • 0.22 cc/g micropore volume (N2 adsorption)

  39. Activity and Selectivity for Al-free Ti-Beta(F) and Ti-Beta(OH) in the Epoxidation of Methyl Oleate with H2O2 Conversion (mol%) Selectivity Catalyst TiO Methyl Oleate H O Epoxide H O 2 2 2 2 2 (% w/w) Ti-Beta(F) 2.2 81.2 96.6 95.1 55.7 Ti-Beta(OH) 3.3 27.6 97.5 80.2 17.8

  40. O O O O H O + O O H O + 2 2 O H 1.5 mol 1.5 mol 1.5 mol 1.5 mol acetic acid anhydride peracid acid Aqueous hydrogen peroxide 70% 1:1 molar ratio of H O 2 2 and H O 2 O O O 2 H O + O H 2 O 3 mol 1.5 mol 1.5 mol O O O O O + + O H O O H 1 mol 1.5 mol 1 mol Baeyer-Villiger oxidation of ketones

  41. Baeyer-Villiger oxidation with peracids O O O R C O H 3 O O O O R C O H + + 3 O O O O

  42. ACETIC ACID ACETIC ANHYDRIDE Acetic Acid KETONE H2O2 PERACID Acetic Acid KETONE LACTONE LACTONE H2O2 FUTURE PROCESS ACTUAL PROCESS

  43. Sn-Beta Zeolite   

  44. Chemoselective Baeyer-Villiger Oxidation with Different Catalysts O O O O + + O O O O o x i d a n t c o n v . / % S n - B e t a / H O 6 8 1 0 0 : 0 : 0 2 2 m C P B A 8 5 1 1 : 7 1 : 1 8 [ a ] T i - B e t a / H O 4 6 0 : 7 9 : 0 2 2 9 3 0 : 3 3 : 2 0 M T O / H O 2 2 [ a ] r e s t m i s s i n g t o 1 0 0 % w e r e o p e n i n g p r o d u c t s o f t h e e p o x i d e .

  45. O O O O O O O O Baeyer-Villiger oxidation of bicyclo[3.2.0]hept-2-en-6-oneusing different oxidation systems R eactant Products c o n v . / % selectivity/% a Sn - Beta > 95 100 0 0 mCPBA > 95 29 34 37 a Enzymes 100 0 0 a MTBE as solvent at 30ºC, Reaction time, 2 h. As 67:33 mixture of isomers

  46. Sn-Beta as solid Lewis-acid catalyst Synthesis of Melonal powerful, green, cucumber-like and melon odor

  47. Sn-Beta as solid Lewis-acid catalyst Synthesis by chemoselective Baeyer-Villiger oxidation Synthesis by a Darzens reaction

  48. Classification of zeolites and similar porous materials depending on the dimensions of channels 30 Mesoporous 20 18 Ox Pore Diameter (Å) MCM-41 12 Ox 10 10 Ox VPI-5 8 Ox ß, Y, ž ZSM-5 Erionita large medium extra large low Pore Size

More Related