1 / 22

Noise model and accurate fitting of high magnification PSPL events

Noise model and accurate fitting of high magnification PSPL events. Pascal Fouqu é. Alerts from OGLE-III and MOA-II in 2008. 912 alerts (647 OGLE, 475 MOA) OGLE: Feb. 23 - Nov. 3 MOA: Feb. 9 - Oct. 21 176 possible anomalies (including HME) 97 followed by microFUN 78 RoboNet-II / LCOGT

ryder-ward
Download Presentation

Noise model and accurate fitting of high magnification PSPL events

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Noise model and accurate fitting of high magnification PSPL events Pascal Fouqué

  2. Alerts from OGLE-III and MOA-II in 2008 • 912 alerts (647 OGLE, 475 MOA) • OGLE: Feb. 23 - Nov. 3 • MOA: Feb. 9 - Oct. 21 • 176 possibleanomalies (including HME) • 97 followed by microFUN • 78 RoboNet-II / LCOGT • 78 PLANET • 74 MindStep

  3. 29 announced as possible HME • KB08022 • OB08013 = KB08032 • KB08044 = OB08054 • KB08054 • KB08087 • KB08096 • OB08140 = KB08115 • KB08105 • OB08199 = KB08144 • OB08209 = KB08155 • OB08210 = KB08177 • OB08215 = KB08161 • KB08149 • KB08151 • KB08159 • KB08198 • OB08279 = KB08225 • OB08303 = KB08267 • OB08426 • KB08310 • KB08311 • KB08349 = OB08509 • KB08383 • KB08384 • KB08402 • KB08415 • OB08580 • KB08428 • KB08453

  4. First impressions • More MOA than OGLE announcements • Not all of them were HME • Some present further anomalies • Not all announced: • OB08155 = KB08137 • OB08290 = KB08241 • OB08307 = KB08215 • OB08349 = KB08261 • OB08358 = KB08264 • OB08367 = KB08269 • KB08307 = OB08448 • KB08325 • KB08352 • KB08356 • OB08506 • OB08513 = KB08401

  5. A posteriori • Difficult to predict Amax from few points • Include priors as in BAP (M. Albrow) • Even when finished, accurate parameters are difficult to measure: • Combining several telescopes • MOA only events • Blending • Noise model

  6. Analysis • plens fitting program: K. Horne, used by RoboNet/LCOGT • Noise model: 3 components: • Bright or HM events: errors down to 1 mmag: add percent systematic error: 2 to 5 mmag • Baseline: add flux accuracy due to faint background stars; larger for fainter stars: 0 to 0.1 mag • Rescale error bars: for OGLE, 0.8 - 2.0

  7. Modelling parameters • Fit: 4 (t0, tE, u0, m0): no blending • 5: blending grid: parameters vs b = fb/fs • 6: 0 (baseline flux accuracy in mag) • 7: f (error bar scaling factor) • Grid 0 vs. f

  8. Example of OB08279: blend ratio grid

  9. Example of OB08279: noise model grid

  10. Real HME events • Definition: Amax > 40 (4 mag) • About 16: 2% of all events • Retained (11 MOA, 5 OGLE): • KB08087 (60) • KB08096 (300) • KB08149 (600) • KB08151 (300) • KB08198 (40) • KB08310 (ext src) • KB08311 (200) • KB08383 (ext src) • KB08415 (130) • KB08428 (100) • KB08453 (100) • OB08013 (44) • OB08199 (44) • OB08279 (4000) • OB08290 (ext src) • OB08303 (55) • Extended source effects in some: O279?

  11. OB08279 = KB08225 • Highly blended event: b = 40 • tE = 130 days, u0 = 2 10-4 (OGLE only) • OGLE, MOA, FUN, Canopus, RoboNet-II/LCOGT • Marginal extended source effect:  = u0 • Extended source: 2= 60 • Fix LLD for 5000 K dwarf • Andy’s sfit program, Yoo approx.: • u0 = 4.3 10-4 -> 5.7 10-4 and  = 5.9 10-4

  12. PSPL ESPL

  13. OB08290 = KB08241 • Clear extended source effect: ~ 60 |u0| • tE = 16.5 days • 12 telescopes: OGLE, MOA, FUN (4), LCOGT/RoboNet (3), PLANET (3) • Negligible blending • V, R, I, clear: fit LLD • Andy’s sfit program, Yoo approx. •  = 0.0220

  14. OB08290 = KB08241 • V=0.72, =0.45 ≈ EROS 2000-BLG-5 -> K3 III • Target in 2MASS but blended: IRSF separates components • Estimate of extinction: isochrones fit • Bonatto et al. (2004) isochrones for 2MASS photometric system • IRSF images (S. Nishiyama) • Aks=0.44, Aj=2.5 Aks, Ah=1.7 Aks, =14.4 • J0=13.85, H0=13.17, Ks0=13.01: K4 III • CTIO V - I CMD: V0=16.10, I0=14.73: K3 III • Martin’s galactic model: disk lens (2/3-1/3), M=0.3 Msun at 5.8 kpc

  15. Reddening law and extinction corrections • Sumi (2004) gives E(V-I) for each OGLE-II field • Ai = 0.964 E(V-I), Av = 1.964 E(V-I) • What to do when OGLE-III event not in OGLE-II field? • Once OGLE-III calibrated, use RGC: clump measured color gives E(V-I) (assume source and clump equally extincted) • Ai: three routes: use Sumi’s Ri (or other value), use clump measured magnitude and assumed distance (depends on bar geometry) • Third route: use near-infrared extinction maps, but which ratio E(V-I)/Aks ? • Near-infrared ( > 0.8 m): power-law: • E(-Ks)/E(J-Ks) = a - + b • Cardelli et al. (1989):  = 1.61 • He et al. (1995):  = 1.73 • Nishiyama et al. (2006):  = 1.99 • I adopt Av/Aks=10, E(V-I)/Aks=4.4

  16. New IRSF work • Nishiyama et al. (2008): compare OGLE-II and IRSF for Udalski’s A region (l = 0, b = -2) • Aj/Av = 0.187 +- 0.009 • Similarly, Aj/Ai = 0.392 +- 0.004 • Gives Ri = Ai/E(V-I) = 0.91 +- 0.13 • Nice confirmation of Sumi’s result 0.930 +- 0.006 • Extrapolating to E(V-I)/Aks ? Not same region • If correct: Av/Aks=16.2 +- 0.8, E(V-I)/Aks = 8.5 +- 0.8

  17. Isochrone fits • 2MASS images not deep enough • Needs IRSF images • Nishiyama uses (H-Ks)0 = 0.07 + his reddening law: • Aj=3.0 Aks, Ah=1.73 Aks • Example of OB08290: gives Aks=0.48 but bad fit • I get 0.42 with Aj=2.6 Aks and same Ah/Aks • Proves that reddening law depends on direction

More Related