E N D
1. ALKANI
4. Struktura metana
5. Orbitalni prikaz metana i etana
6. Figure Number: 02-00-002
Title: Simple Alkanes
Caption: Names, Kekulé structures, condensed structures, and ball-and-stick structures of molecules of the first four straight-chain alkanes.
Notes: Simple alkanes have the general formula CnH2n+2. Figure Number: 02-00-002
Title: Simple Alkanes
Caption: Names, Kekulé structures, condensed structures, and ball-and-stick structures of molecules of the first four straight-chain alkanes.
Notes: Simple alkanes have the general formula CnH2n+2.
12. III. Fizikalna svojstva topljivost: hidrofobni, slabo polarni
slabe van der Waalsove veze
gustoca: manja od 1 g/mL, povecava s velicinom alkana
vrelišta rastu s porastom broja C atoma
povišenje tališta ovisi o slaganju u kristalnoj rešetki
izomer s ravnim lancem ima više vrelište od izomera s razgranatim lancem
13. C1-C4: plinovi (prirodni plin)
C5-C6: petroleter
C6-C7: ligroin (laki benzin)
C5-C10: prirodni benzin
C12-C81: petrolej (kerozin)
C12 i viši: plinsko ulje (dizelsko)
C20-C34: maziva ulja
15. Vrelišta alkana
16. Tališta alkana
17. IV. Konformacije alkanaKonformacije etana zvjezdasta konformacija posjeduje nižu energiju
diedarski kut = 60 o
20. Konformacije propana povecanje torzijske napetosti zbog vece metilne skupine
21. Konformacije butana najviša energija kada su metilne skupine zasjenjene
stericke smetnje
diedarski kut = 0 o
22. Konformacije butana najniža je energija kada su metilne skupine anti
diedarski kut = 180 o
23. Konformacije butana antiklinalna (zasjenjena)
više energije od iste zvjezdaste
diedarski kut = 120 o
24. Konformacijska analiza
25. V. Priprava alkana Redukcije
Hidrogenacija alkena
Hidrogenacija alkina
Redukcija alkil halogenida hidridima
Redukcija alkil halogenida s Zn u kiseloj sredini
Grignardova sinteza
Reakcije sparivanja
Wurtz-ova reakcija
Corey-House-ova reakcija sparivanja
26. Redukcija Hidrogenacija alkena
Hidrogenacija alkina
27. Redukcija Redukcija alkil halogenida hidridima
Redukcija alkil halogenida s Zn u kiseloj sredini
28. Grignardova sinteza
29. Reakcije sparivanja Wurtz-ova reakcija
30. Reakcije sparivanja Corey-House sparivanje (Gilman-ov reagens)
31. VI. Reakcije alkana Sagorijevanje
32. Reaktivnost alkana tzv. parafini (spojevi koji posjeduju niski afinitet prema drugim spojevima) jer su vrlo nereaktivni
halogeniranje je pri povišenoj temperaturi i prisutnosti svjetla obicno nekontrolirano
34. Mehanizmi kloriranja i bromiranja alkana
37. Brzina kloriranja
39. Figure Number: 09-01a,b
Title: Figure 9.1
Caption: Reaction coordinate diagrams for the abstraction of primary, secondary, and tertiary hydrogens by chlorine and bromine atoms.
Notes: Since the chlorine abstractions are exothermic, their transition states resemble reactants, and their relative stabilities do not fully reflect the relative stabilities of the product alkyl radicals. The bromine abstractions are endothermic, so the bromine-abstraction transition states resemble product alkyl radicals. Thus, the relative stabilities of the bromine-abstraction transition states resemble the relative stabilities of the alkyl radical products. Thus, the activation energies (and relative speeds) of bromine-abstraction reactions more closely reflect alkyl radical stabilities than do the activation energies of chlorine-abstraction reactions.Figure Number: 09-01a,b
Title: Figure 9.1
Caption: Reaction coordinate diagrams for the abstraction of primary, secondary, and tertiary hydrogens by chlorine and bromine atoms.
Notes: Since the chlorine abstractions are exothermic, their transition states resemble reactants, and their relative stabilities do not fully reflect the relative stabilities of the product alkyl radicals. The bromine abstractions are endothermic, so the bromine-abstraction transition states resemble product alkyl radicals. Thus, the relative stabilities of the bromine-abstraction transition states resemble the relative stabilities of the alkyl radical products. Thus, the activation energies (and relative speeds) of bromine-abstraction reactions more closely reflect alkyl radical stabilities than do the activation energies of chlorine-abstraction reactions.
46. Stereokemija halogeniranja
48. Figure Number: 09-01-13
Title: Stereochemistry of Radical Substitution Reactions
Caption: If a reactant does not have an asymmetric carbon, and a radical substitution reaction forms a product with an asymmetric carbon, a mixture of enantiomers is produced.
Notes: In a radical substitution reaction, a radical intermediate is produced which can abstract atoms to form a new bond from either of two possible orientations, giving rise to either of two possible enantiomers.Figure Number: 09-01-13
Title: Stereochemistry of Radical Substitution Reactions
Caption: If a reactant does not have an asymmetric carbon, and a radical substitution reaction forms a product with an asymmetric carbon, a mixture of enantiomers is produced.
Notes: In a radical substitution reaction, a radical intermediate is produced which can abstract atoms to form a new bond from either of two possible orientations, giving rise to either of two possible enantiomers.
49. Figure Number: 09-01-03UN
Title: Halogen Molecules
Caption: Space-filling models of diatomic halogen molecules.
Notes: As the halogen atoms grow in size, they form longer, weaker bonds with carbon atoms and other halogen atoms.Figure Number: 09-01-03UN
Title: Halogen Molecules
Caption: Space-filling models of diatomic halogen molecules.
Notes: As the halogen atoms grow in size, they form longer, weaker bonds with carbon atoms and other halogen atoms.
51. MO alilnog radikala
53. Stabilizacija radikala