1 / 23

Hot Dip Aluminizing Process for TBM applications - An Overview

Hot Dip Aluminizing Process for TBM applications - An Overview. Nirav I. Jamnapara , S. Mukherjee, P. M. Raole, E. Rajendrakumar INSTITUTE FOR PLASMA RESEARCH Gandhinagar – 382044, India. About LLCB. Solid + Liquid Breeder Concept

saad
Download Presentation

Hot Dip Aluminizing Process for TBM applications - An Overview

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hot Dip Aluminizing Process for TBM applications- An Overview Nirav I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar INSTITUTE FOR PLASMA RESEARCH Gandhinagar – 382044, India Workshop on Steels & Fabrication Technologies 2008 21-22 July, 2008 Organized by: IPR & IGCAR

  2. About LLCB • Solid + Liquid Breeder Concept • Li2TiO3 pebbles as solid breeder & Pb-17Li Eutectic as liquid breeder. Fig 1: Open view of LLCB TBM N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  3. Schematic 450-900 C 460 C PbLi out 325 C PbLi in 2 N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  4. Environment & Challenges • Liquid Pb-17Li @ 1.2 MPa, 325-460 C, 0.5-1 m/s velocities [1]– Hot Corrosion-erosion • T generation in CB & Pb-Li circuits [1] – Tritium permeation through FMS • Thermal Cycles [1] • MHD effects [1]– Insulation needed N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  5. Why coating? Fig 3: T permeation into coolant from Pb-17Li blanket by Reiter [2] Fig 4: Permeability of several metals by P.S. Korinko [3] Crsn N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  6. Ideal Coating Should… • Protect FMS against corrosion from Pb-17Li (> 10,000 hrs) [5, 6] • Resist Tritium permeation through FMS (PRF > 75 in Pb-17Li conditions) [4] • Maintain thermal compatibility () • be Electrically insulating (to resist MHD effects) • not affect heat transfer • be easy to apply on substrates N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  7. Candidate coatings N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  8. Why Aluminide coating? • Good resistance to T permeation* • Good corrosion resistance of FMS against liquid Pb-Li (480 – 550 C) • Thermally compatible • Electrically Insulating top layer (Al2O3) Volume resistivity: 0.01  m *EU Fusion Technology Program has considered aluminide coatings as ‘reference coating’ (HDA & CVD) as tritium permeation barriers. Ref # 09: J. Konys et. al., FZK Germany N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  9. Comparison N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  10. Why Hot Dip Aluminizing? • Aluminizing possible by solid, liquid & gas processing [3] • Better PRFs with H2 as compared to CVD (J. Konys; FZK, Germany, [4]) • Ease of processing complex geometries • Scalable • Adherent alumina by oxidation of surface N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  11. Targeted Aluminide Coating • Intermetallic Fe-Al + Al2O3 1-10 m Al2O3 (for resistance to corrosion, MHD and Erosion) 150-180 m Intermetallic Fe-Al (for Tritium Permeation Resistance) Ref: J. Konys et. al., FZK [4,5] N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  12. HV 320 270 240 FeAl -Fe(Al) F82H-mod. Targeted Microstructures Parameters for hot dipping: temperature at 700°C and dipping time of 30 s Microstructure of hot dipped surface Microstructure after heat treatment Al Fe2Al5 F82H-mod. The alloyed surface layer consists of brittle Fe2Al5, covered by solidified Al Heat treatment at 1040°C/0.5 h + 750°C/1 h and an applied pressure of >250 bar (HIPing) reduces porosity and transforms the brittle Fe2Al5-phase into the more ductile phases FeAl and -Fe(Al) Ref: J. Konys et. al., FZK [4,5] N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  13. HDA Setup - proposed Al2O3 - crucible Sample Holding chamber with protective environment Al-melt Furnace Melting chamber Coating conditions [4,5] Temperature: 700 – 750 °C Melt: Al or Al-Si (7-11% Si) Sample dimensions: 50 mm (l) x 30 mm (w) x 5 mm N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  14. HDA PROCESS          Steel sample (sheet or tube) Grinding Cleaning in acetone Coating, aq. flux-solution Pre-drying : 100°C Glove-box (Ar-5%H2) Heat Treatment (Standard process)    Coated sample   HIP-process (advanced process) Cleaning in water   Ref: Voltrag, et. al. FZK [4,5] Hot-dip-aluminizing, 700°C N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  15. Challenges • Wettability of sample in Al melt • Melt Composition (alloying, viz. Si) • Surface Activation (fluxes etc.) • Case composition – tailored (Fe-Al) • Post treatment (HIPing), dipping time, batch composition • No porosities (HIPing), Case depth • Adherent Al2O3 layer on top • Plasma oxidation process • Qualify for validation (performance related) N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  16. Plans for development • Development of homogenous aluminized coating after HDA • Generation of desired compositional profile by heat treatment & plasma oxidation • Hot Isostatic Pressing of aluminized samples (To be worked out in collaboration with other national insitutes) Hot Dip aluminizing 700 – 750 C HIPing 1050 C, 250 Bar 1 hr Validation Plasma Oxidation & H/T 1050 C N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  17. Validation: • Pb-17Li Loop testing • H2 / T permeation: • Initially the sample will be tested for Hydrogen permeation • Susequently the sample will be validated for Tritium permeation in Pb-Li environment Ref: Schematic of Permeation testing facility at ENEA, Italy N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  18. Present status • Design & generation of specs for furnace • Fabrication & installation of furnace • Preliminary trials for HDA – wettability & uniformity • Heat treatment optimization • Characterization • Hot Isostatic Pressing • Validation N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  19. Thank You N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  20. References: • Design Description Document for Indian Lead Lithium cooled ceramic breeder (LLCB) Blanket • G. W. Hollenberg et. al., Tritium / Hydrogen Barrier Development, June 1994, 3rd Intl. Symposium on Fusion Nuclear Technologies, LA, California • P.S. Korinko et. al., ‘Dev. of aluminide coatings for Hydrogen isotope permeation resistance’, Tritium 2001, Tsukaba, Japan, 11-16 Nov, 2001 • J. Konys et. al., ITER TBM Project Meeting, UCLA, Feb 23-25, 2004. • J. Konys et. al., J. Nucl. Mat. 367-370 (2007) 1144-1149 • H. Glasbrenner et. al., J. Nucl. Mat. 307-311 (2002) 1360-1363 BACK N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  21. Corrosion data Ref: W. Krauss et. al., Intl. workshop on breeder blankets, Russia June, 2006 BACK N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  22. Results of permeation testing in H2–gas in different facilitiesat ENEA Brasimone, Italy (PERI, CORELLI)Permeation Reduction Factors (PRF) cancelled pH2= 1 bar, steel: F82H-mod., Ref: J. Konys et. al. [4] BACK N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

  23. HV 320 270 240 FeAl -Fe(Al) F82H-mod. FeAl HV 320 270 240 -Fe(Al) F82H-mod. WHY HIPPING? Microstructure after heat treatment Microstructure after HIP Heat treatment at 1040°C/0.5 h + 750°C/1 h and an applied pressure of >250 bar (HIPing) reduces porosity and transforms the brittle Fe2Al5-phase into the more ductile phases FeAl and -Fe(Al) Heat treatment at 1040°C/0.5 h + 750°C/1 h incorporates the solidified Al and transforms the brittle Fe2Al5-phase into the more ductile phases FeAl and -Fe(Al) BACK Ref: J. Konys et. al. [4] N.I. Jamnapara, S. Mukherjee, P. M. Raole, E. Rajendrakumar WS&FT ’08, 21-22 July, 2008

More Related