1 / 20

By : Christian Pagé, CERFACS Julien Boé, CERFACS Laurent Terray, CERFACS

Impact of climate change on France watersheds in 2050 : A comparison of dynamical and multivariate statistical methodologies. By : Christian Pagé, CERFACS Julien Boé, CERFACS Laurent Terray, CERFACS Florence Habets, UMR Sisyphe Éric Martin, CNRM, Météo-France. CMOS Kelowna, 26-29 May 2008.

sadie
Download Presentation

By : Christian Pagé, CERFACS Julien Boé, CERFACS Laurent Terray, CERFACS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Impact of climate change on France watersheds in 2050 :A comparison of dynamical and multivariate statistical methodologies By : Christian Pagé, CERFACS Julien Boé, CERFACS Laurent Terray, CERFACS Florence Habets, UMR Sisyphe Éric Martin, CNRM, Météo-France CMOS Kelowna, 26-29 May 2008

  2. Outline • Problematic of Downscaling • Why use a statistical approach? • Methodology • Statistical Downscaling & Weather Types • Principles & Hypothesis • Validation • Application • Impact of climate change on France watersheds • Validation • Comparison against quantile-quantile and perturbation methods • Summary & Future CMOS Kelowna, 26-29 May 2008 2

  3. Statistical downscaling Dynamicaldownscaling Problematic: Generalities Downscaling Two main methodologies Better representation physical processes Much less CPU! Statistical relationship: Local fields & Large-scale forcings Resolve dynamics and physics: Numerical model Can be used separately or in combination CMOS Kelowna, 26-29 May 2008 3

  4. Statistical downscaling: General methodology Local Geographical Characteristicstopography, land-use, turbulence Global ScaleClimate Variable L (predictors) MSLP, geopotential, upper-level wind Local ScaleClimate Variable R 10m wind, precipitation, temperature R = F (L, β) β such that║R – F(L, β)║ ~ Min F based on Weather Typing CMOS Kelowna, 26-29 May 2008 4

  5. Statistical downscaling: Current methodology • Based on: • NCEP re-analyses (weather typing) • Météo-FranceMesoscale Meteorological Analysis (SAFRAN) • France Coverage • 1970-2005 • 8 km spatial resolution from coherent climatic zones • 7 parameters • Precipitation (liquid and solid) • Temperature • Wind Module • Infra-Red and Visible Radiation • Specific Humidity SAFRAN 8-km resolution orography CMOS Kelowna, 26-29 May 2008 5

  6. Statistical downscaling: Current methodology • For a given day j in which we know the Large-Scale Circulation • Closest weather type Ri • Reconstruct precipitation: regression (distance to weather types) • Look for analogs (days) among all Ri days • Closest in terms of precipitation and temperature (index) • Randomly choose one day • Applicable as soon as we have long enough observed data series Boe J., L. Terray, F. Habets and E. Martin, 2006: A simple statistical-dynamical downscaling scheme based on weather types and conditional resampling J. Geophys. Res., 111, D23106. CMOS Kelowna, 26-29 May 2008 6

  7. Statistical downscaling: Validation Precipitation mm/day Period: 1981-2005 Downscaling: MSLP ARPEGE A1B ScenarioRegional Simulation TSO fromCNRM-CM3 model Safran Downscaling DJF 0.6 0.6 7 7 JJA 0.5 5 0.5 5 7

  8. Statistical downscaling: Validation: Hydrology 1200 150 800 Flow Validation LOIRE(Blois) SEINE (Poses) ARIEGE (Foix) Annual Cycle OBS NCEP ARPEGE-VR 0 0 0 Jan to Dec Jan to Dec Jan to Dec 2500 2500 LOIRE (Blois) 250 SEINE (Poses) ARIEGE (Foix) CDF OBS NCEP ARPEGE-VR 0 0 0 0 to 1 0 to 1 0 to 1 VIENNE (Ingrandes 500 Winter Mean OBS NCEP (0.85) SAFRAN (0.97) 0 1960 2010

  9. Statistical downscaling: Validation: Summary • Predictors • Strong link with regional climate • Simulated correctly by model • Statistical relationship F still valid for perturbed climate. • Cannot be validated or invalidated formally. Also true for physical parameterisations and bias correction. • Predictors encompass completely the climate change signal • Need to use Temperature as a predictor • Watersheds flows are correctly reproduced • Annual Cycle • CDF CMOS Kelowna, 26-29 May 2008 9

  10. Application: Impact of climate change on France watersheds Precipitation change: ARPEGE-VR, in 2050, A1B GHG Scenario (in % of 1970-2000 mean) Downscaled -0.5 +0.5 DJF JJA Simulated 10

  11. Application: Impact of climate change on France watersheds Relative change watershed flows 2046/2065 vs 1970/1999 in Winter +0.5 -0.5 Statistical downscaling Dynamical Quantile-Quantile downscaling CMOS Kelowna, 26-29 May 2008 11

  12. Application: Impact of climate change on France watersheds Relative change watershed flows 2046/2065 vs 1970/1999 in Summer +0.5 -0.5 Statistical downscaling Dynamical Quantile-Quantile downscaling CMOS Kelowna, 26-29 May 2008 12

  13. Application: Impact of climate change on France watersheds Relative change watershed flows 2046/2065 vs 1970/1999 Perturbation method Winter Corr 0.92 Spring Corr 0.38 +0.5 -0.5 Summer Corr 0.86 Autumn Corr 0.72 13

  14. Application: France watersheds: Uncertainties Atlantic Ridge Blocking + ~0 20 days NAO+ NAO- + - Models -20 days Correlation Weather Type Occurrence Precipitation -0.5 +0.5 14

  15. Application: France watersheds: Snow Cover 5 30 Future Present Aug Jul Aug Jul 500 250 Aug Aug Jul Jul • Water Equivalent (mm) of Snow Cover • Pyrenees • 2055 • Grayed zones: min/max 15

  16. Summary - 1 • Statistical downscaling methodology • Validation is very good • Hypothesis of stationarity (regression) • Weather Typing Approach • Low CPU demand • Evaluate uncertainties with many scenarios • Uncertainties of downscaling method are limited • Those of numerical models are, in general, greater CMOS Kelowna, 26-29 May 2008 16

  17. Summary - 2 • Ensemble Mean of Watershed flows • Decreases moderately in Winter (except Alps and SE Coast) • 2050 : important decrease in Summer & Autumn • Robust results, low uncertainty • Strong increase of Low Water days • Heavy flows decrease much less than overall mean CMOS Kelowna, 26-29 May 2008 17

  18. Down the Road… • Whole Code Re-Engineering • Modular approach • Implement several statistical methodologies • Configurable • End-user parameters • Core parameters • Web Portal • Climate-Change Spaghetti to Climate-Change Distribution • Probability Density Function • Re-sampled Ensemble Realisations • M. Dettinger, U.S. Geological Survey (2004) CMOS Kelowna, 26-29 May 2008 18

  19. Merci de votre attention!  Christian Pagé, CERFACS christian.page@cerfacs.fr Julien Boé, CERFACS Laurent Terray, CERFACS Florence Habets, UMR Sisyphe Éric Martin, CNRM, Météo-France CMOS Kelowna, 26-29 May 2008 19

  20. Régimes de temps et hydrologie (H1) • Définition de régimes/types de temps discriminants pour les précipitations en France • Variable de circulation de grande échelle: Pression (MSLP), provenant du projet EMULATE (1850-2000, journalier, 5°x5°), précipitations SQR (Météo-France) • Classification multi-variée Précipitations & MSLP, pas de temps journalier, espace EOF. On conserve ensuite uniquement la partie MSLP pour définir les types de temps. Domaine classification MSLP (D1) * 310 stations pour les précipitations 8 à 10 régimes de temps !

More Related