1 / 34

Sunhee Lee Network for Computational Nanotechnology Electrical and Computer Engineering

Development of a Massively Parallel Nano-electronic Modeling Tool and its Application to Quantum Computing Devices. Sunhee Lee Network for Computational Nanotechnology Electrical and Computer Engineering sunnyleekr@purdue.edu . Building block for quantum computing device. Quantum dot (QD)

salma
Download Presentation

Sunhee Lee Network for Computational Nanotechnology Electrical and Computer Engineering

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Development of a Massively ParallelNano-electronic Modeling Tool and its Application to Quantum Computing Devices Sunhee Lee Network for Computational Nanotechnology Electrical and Computer Engineering sunnyleekr@purdue.edu

  2. Building block for quantum computing device • Quantum dot (QD) • Confinement (particle-in-a-box) • s- p- d- like orbitals (“artificial atom”) • Optical applications (LED/PD) • Applications for quantum computers (QC) • Carry electron/nucleus spin info. n=3 n=2 n=1 QDOT Lab @nanoHUB.org Light absorption 6~7 ionized P in Si Hanson and Awschalom, Nature 453, 2008 M. Füchsle et.al., Nature Nanotechnology, 2010

  3. Ionized P impurity QD • Phosphorus quantum dot in Si • Promising candidate for QC device • Long spin coherence times • Naturally uniform • Store electron/nucleus spin info. • Fabrication challenges • First single donor QD system !! • STM+MBE technology • 2D dopant patterning QD images adopted with permission from Simmons’ group 1 3 5 4 2

  4. Single Donor Quantum Dot: Experiment Experimental Work (UNSW): a single donor QD ! • Questions: is this real?? • How can we explain the coupling of the channel donor to the Si:P leads ? • Can we quantify the controllability of plane Si:P leads on the channel confinement ? • Why are there the conductance streaks at the Coulomb diamond edges ? Prove it is real! (Purdue)

  5. SiGe Alloy disorder Si Rough steps 15 nm 10 nm SiGe Si 16 nm SiGe 150 nm Modeling Si:P QD : Need for atomistic modeling • Predicting valley splitting in Si • (First excited state) – (GND state) • Important measure in QC • 10 ueV~ 1 meV • Random alloy disorder • Sample variation (Error bars) • ex) disorders in the 2D Si:P layer, published in PRB • Individualdopant spectrum • Single impurity QD in finFET • Atomistic treatment with localized basis set • sp3d5s* atomistic tight-binding Kharche et al. Appl. Phys. Lett. 90, 092109 (2007) Lansbergenet al. Nat. Phys. 4, 656 (2008)

  6. Modeling Si:P QD : Experience Modeling Work (Purdue): Single Donor QD system Strength • Single impurity physics (R. Rahman & S. Rogge) • Realistic modeling of Si:P contacts • Strong connections to experiment • Single electron charging energy, transition points, gate controllability & Coulomb diamond

  7. Modeling Si:P QD : NEMO3D-peta • Solving an eigenvalue problem • Atomistic grid • (106~107) (atoms) X (10~20) (basis/atom) = 107~108 !! • NEMO3D-peta (2008~) • Atomistic tight-binding, million atom simulation tool • For QD-like simulations • Inherits the physics aspect of NEMO3D • Schrödinger-Poisson self-consistency module • 3D spatial parallelization • Useful in self-consistent simulations NEMO3D (physics) (Schrödinger solver) NEMO3D-peta (Schrödinger-Poisson solver) Localized orbital basis (sp3d5s*) Atomistic structure (~106 atoms) + NEMO3D

  8. Parallelization engine in NEMO3D-peta • Why do we need “better” parallel computing?  To reduce simulation time even more! NEMO3D: 1D slices NEMO3D-peta: 2D/3D slices 1 16 2 4 8 NEMO3D : single shot eigenvalue problem NEMO3D-peta: Self-consistent simulation !! (10~30 iterations) time # procs.

  9. NEMO3D-peta Highlights (2008~present) • 90,000+ lines of code (from scratch!!) • 3.5+ years of development • ~8 applications implemented • Expandableand maintainable • 15,000,000 compute hours awarded • Capable of utilizing 32,000 processors • Released to Intel (2010) • Top of the Barrier / bandstructure app. • 1nanoHUB tool • 1d-hetero • 15 Publications in line • 9 journal and conference papers (3 experimental) • 2 journal publication accepted (1 B. Weber et al. Science) • 4 journal publications ready for submission (1 M. Fuechsle et al.)

  10. NEMO3D-peta for QD simulation NEMO3D-peta development NEMO3D (physics) (Schrödinger solver) 3D spatial parallelization Localized orbital basis (sp3d5s*) QD Device modeling Atomistic structure (~106 atoms) Potential-charge self-consistency

  11. Single Donor Quantum Dot: Questions Experimental Work (UNSW): a single donor QD ! • Questions: is this real?? • How can we explain the coupling of the channel donor to the Si:P leads ? • Can we quantify the controllability of plane Si:P leads on the channel confinement ? • Why are there the conductance streaks at the Coulomb diamond edges ? Prove it is real !!

  12. Modeling: Domain • Domain • Doping plane 2D (n++ doped) • 3D distribution of charge 3D schematic Top view 56 nm 128 nm δ-doping plane G2 D S 360 nm [001] G1 [1-10] p-type substrate (1015cm-3) [110]

  13. Modeling: Background potential • Semi-classical calculation • Background potential • WITHOUT impurity QD • Leads • (n++) doping region, ND=1021 (cm-3) • Background doping (p-) • NA=1015(cm-3) • VSD = 0 • VG1=VG2=VG G2 DRN SRC [1-10] G1 [110] Device geometry (top view) Semi-classical region

  14. Modeling: Impurity QD potential • Empty QD (ionized donor QD) • Binding energy data of P in Si (Rep. Prog. Phys., Vol. 44, 1981) • Coulombic (1/r) + TB param. fitting (Work by R. Rahman @ Nat. Phys.) • “D+” state • Single electron filled QD • QD potential “screened”  Shallower potential • Self-consistent calculation • Next ground state “floats up” • “D0” state QD changes shape with electron filling !!

  15. Modeling: Potential profile • Superposition • Background potential • QD potential Equilibrium potential profile [110] (nm)

  16. Modeling: Charge filling (Ack: H. Ryu) • Quantum region • Channel region • 12x60x20 (nm3) • Compute ground eigenstate at each Vg • Determine charge filling • Does Ground state hit EF(SRC)? G2 DRN SRC [1-10] G1 [110] D+ Device geometry (top view) Quantum region

  17. Modeling: Charge filling (Ack: H. Ryu) • VDS= 0 V, sweep VG • Plot • Ground state eigenvalue (1s(A)) • EF • VG = 0.0 V • Channel empty (D+) D+ - 5 5 -5 -5 [110] (nm) [110] (nm) Ground eigenstate Acknowledgment: Dr. HoonRyu

  18. Modeling: Charge filling (Ack: H. Ryu) • VDS= 0 V, sweep VG • Plot • Ground state eigenvalue (1s(A)) • EF • VG = 0.2 V • Channel empty (D+) D+ - 5 5 -5 -5 [110] (nm) [110] (nm) Ground eigenstate

  19. Modeling: Charge filling (Ack: H. Ryu) • VDS= 0 V, sweep VG • Plot • Ground state eigenvalue (1s(A)) • EF • VG ≈ 0.45 V • 1s(A) hits EF • D+  D0 transition • Screened QD ! (impose D0 potential) D+ - 5 5 -5 -5 [110] (nm) [110] (nm) Ground eigenstate

  20. Modeling: Charge filling (Ack: H. Ryu) • VDS= 0 V, sweep VG • Plot • Ground state eigenvalue (1s(A)) • EF • VG ≈ 0.55 V • Channel filled by one electron (D0) D0 - 5 5 -5 -5 [110] (nm) [110] (nm) Ground eigenstate

  21. Modeling: Charge filling (Ack: H. Ryu) • VDS= 0 V, sweep VG • Plot • Ground state eigenvalue (1s(A)) • EF • VG ≈ 0.72 V • 1s(A) hits EF • D0  D- transition D0 - 5 5 -5 -5 [110] (nm) [110] (nm) Ground eigenstate

  22. Modeling: Charge filling (Ack: H. Ryu) • Simulation vs. Experiment: How close are we ? 3. EC = 46.3 meV 1e 0e D+ - 5 5 -5 -5 [110] (nm) [110] (nm)

  23. Modeling: Coulomb diamond (Ack: Y.H.M. Tan) • Extract results from NEMO3D-peta • Channel states • Lead DOS profiles • Rate equation tool • Transition points ( 0.42, 0.72V) • Charging energy (Ec = 46.3 meV) • Gate controllability (slope a = 0.15)  Lead DOS profiles (streaks) Lead DOS profiles Methodology, S. Lee, PRB 2011 Si:P wire, H. Ryu, PhD dissertation, 2011 B. Weber, Science 2011 Channel states, EF

  24. Single Donor Quantum Dot: Answers Experimental Work (UNSW): a single donor QD ! • How can we explain the coupling of the channel donor to the Si:P leads ? • Semi-classical treatment of gate biasing • No stark effect (parallel shift of ground state) • Can we quantify the controllability of plane Si:P leads on the channel confinement ? • Transition points / Charging energy • Why are there the conductance streaks at the Coulomb diamond edges ? • Excited states + DOS of the leads

  25. Conclusion • Quantitative match with experiment • Transition point / charging energy / in-plane gate modulation  A strong support for single impurity QD • Methodology applicable for future Si:P QD devices

  26. Summary • Focused on the electrostatic modeling of single donor QD • Gate modulation and charge filling • A quantitative match with the experimental results • Methodology can be extended to future Si:P QD system • Transition phase (Y.H.M Tan) • Double Donor QD (D-168) • Understanding the two-electron operations in multiple QD systems • Find new methods to efficiently model QDs Double Quantum Dot

  27. Acknowledgment • Committee members • Prof. Gerhard Klimeck • Prof. Mark Lundstrom, Prof. Leonid Rokhinson, Prof. Alejandro Strachan & Prof. Michelle Simmons • Special thanks to … • Dr. HoonRyu • Matthias Tan, Zhengping Jiang & JunzheGeng • Dr. Abhijeet Paul • ChangwookJeong, Seokmin Hong & Jayoung Park • Thanks to … • Dr. Mathieu Luisier, Dr. Honghyun Park, Dr. Jim Fonseca & Dr. Michael Povolotskyi • Sunggeun Kim, ParijatSengupta, Mehdi Salmani,SaumitraMehrotra & Yahua Tan • Quantum dot subgroup • CQC2T Collaborators • Dr. Lloyd Hollenberg • Dr. SuddhasattaMahapatra, Dr. Jill Miwa, Dr. Martin Fuechsleand Bent Weber • Cheryl Haines & Vicki Johnson • Funding agencies: NSF, ARO, MSD, SRC …

  28. List of publications • S. Lee, H. Ryu, Z. Jiang, and G. Klimeck, “Million atom electronic structure and device calculations on peta-scale computers,” in 13th International Workshop on Computational Electronics, 2009 (IWCE '09), May 2009 • H. Ryu, S. Lee, and G. Klimeck, “A study of temperature-dependent properties of n-type delta-doped Si band-structures in equilibrium,” in 13th International Workshop on Computational Electronics, 2009 (IWCE '09), May 2009 • S. Lee, H. Ryu, G. Klimeck, H. Campbell, S. Mahapatra, M. Y. Simmons, and L. C. L. Hollenberg, “Equilibrium bandstructure of a phosphorus delta-doped layer in silicon using a tight-binding approach,” IEEE Proceedings of NANO 2010, 2010 • H. Ryu, S. Lee, B. Weber, S. Mahapatra, M. Simmons, L. Hollenberg, and G. Klimeck, “Quantum transport in ultra-scaled phosphorous-doped silicon nanowires,” in Silicon Nanoelectronics Workshop (SNW), Jun. 2010 • B. Weber, S. Mahapatra, W. R. Clarke, R. H., L. S., G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Quantum transport in atomic-scale silicon nanowires,” in Silicon Nanoelectronics Workshop (SNW), Jun. 2010 • G. Tettamanzi, A. Paul, G. Lansbergen, J. Verduijn, S. Lee, N. Collaert, S. Biesemans, G. Klimeck, and S. Rogge, “Thermionic emission as a tool to study transport in undopedn-FinFETs,” IEEE Electron Device Letters, vol. 31, Feb. 2010 • G. Tettamanzi, A. Paul, S. Lee, S. Mehrotra, N. Collaert, S. Biesemans, G. Klimeck, and S. Rogge, “Interface trap density metrology of state-of-the-art undopedSi n-FinFETs,” IEEE Electron Device Letters, vol. 32, Apr. 2011 • A. Paul, G. C. Tettamanzi, S. Lee, S. Mehrotra, N. Colleart, S. Biesemans, S. Rogge, and G. Klimeck, “Interface trap density metrology from sub-threshold transport in highly scaled undoped Si n -FinFETs,” accepted for publication in Journal of Applied Physics 2011 • A. G. Akkala, S. Steiger, J. M. D. Sellier, S. Lee, M. Povolotskyi, T. C. Kubis, H. Park, S. Agarwal, and G. Klimeck, “1d heterostructure tool,”https://nanohub.org/resources/5203, Sep. 2008 (Now replaced by NEMO 5) • S. Lee, H. Ryu, H. Campbell, L. C. L. Hollenberg, M. Y. Simmons and G. Klimeck, “Electronic structure of realistically extended atomistically resolved disordered Si:P δ-doped layers,” Physical Review B, 84 205309, 2011 • B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer,T. C. G. Reusch, D. L. Thompson, W.C.T. Lee, G. Klimeck, L. C. L. Hollenberg, M.Y. Simmons, “Ohm’s law Survives to the Atomic Scale,”, accepted for publication in Science 2011 • Three other publications ready for submission, one in preparation

  29. Result 4 : Coulomb diamond Basic Features Ground states Ground + excited states Coupling DOS in leads

  30. Si MOS QD • Electrostatically defined QD (UNSW) • MOS fabrication technology • Dit = 5x1010 cm-2eV-1 (x 0.1~0.01) • Nelectron= 0, 1, 2, … !! Lateral confinement Vertical confinement Electron charging [001] [110] [110]

  31. Challenges • Six-valley degeneracy • Valley splitting (Δ) = First excited eigenstate – GND state • In this QD : ~100 ueV • Questions • What are the possible factors that influence VS ? • Does our results compare experimental results ? Typical quantum well case example

  32. Method • Simulation domain • Size = 60x90x30 nm3, 8 million atoms • Self-consistent simulation • Input 1: Barrier height (VB1=VB2) • Input 2: Plunger gate size (30xWc) • Wc= 30,40,50 & 60 nm • Input 3: Assume 1 electron filled • Output 1: VP • Output 2: VS [1-10] [110] [001] [110]

  33. Results Small lateral barrier height • Smaller dot, Large lateral barrier  Stronger confinement • Eigenstates float up  Deeper vertical confinement required • VS range : 100~500 ueV (100 ueV exp.) • VS tunable but sensitive to QD geometry and lateral barrier height Large lateral barrier height Weak vertical confinement Strong vertical confinement

  34. Conclusion • VS in Si MOS QD • 100~500 ueV (100 ueV exp.) • VS can be tunable • Controlling barrier height • Adjusting QD size • Sensitive to electrostatics • Work is still in progress • Excited state spectrum @ N electron regime • Compare VS with SiGe-Si-SiGe QD

More Related