570 likes | 715 Views
Institute of Fundamental Technological Research Polish Academy of Sciences (IPPT PAN) 00-049 Warszawa, Swietokrzyska 21. STRUCTURE IDENTIFICATION BY MICROINDENTATION AND ACOUSTIC EMISSION. Janusz Kasperkiewicz. 1. MICROINDENTATION TESTS. - techniques, measuring setup, etc.
E N D
Institute of Fundamental Technological ResearchPolish Academy of Sciences (IPPT PAN) 00-049 Warszawa, Swietokrzyska 21 STRUCTURE IDENTIFICATION BY MICROINDENTATION AND ACOUSTIC EMISSION Janusz Kasperkiewicz KASPERKIEWICZ
1. MICROINDENTATION TESTS - techniques, measuring setup, etc. - testing cement paste - testing concrete 2. ACOUSTIC EMISSION IN MICROINDENTATION EXPERIMENTS 3. AE SIGNALS AND THEIR ANALYSIS 4.MACHINE LEARNING DATA PROCESSING 5. THE EXPERIMENT ON COMPONENTSIDENTIFICATION 6. CONCLUSIONS KASPERKIEWICZ
( ~ a continuation of the Paisley 2003 paper - DSI setup, CP, concrete... ) ACOUSTIC EMISSION and AE SIGNALS PROCESSING MACHINE LEARNING IDENTIFICATION of the components KASPERKIEWICZ
Vickers indenter LVDT sensor tested area KASPERKIEWICZ
D1 D2 D.S.I. D1 ≈D2 ≈ 550μm Cement Past – water-cement ratio: 0.60; loading level: 40 N KASPERKIEWICZ
D1 ≈D2 ≈ 350μm aggregate air void D2 air void aggregate D1 Concrete; loading level: 45 N KASPERKIEWICZ
D 1 . 85437 F = HV 2 D KASPERKIEWICZ
cement paste (each point an average of about 10 indentations) KASPERKIEWICZ
cement paste with metakaolin KASPERKIEWICZ
cement paste ... metakaolin effect KASPERKIEWICZ
cement paste ... fly ash effect KASPERKIEWICZ
0 1 2 ... ... 19... ... 24 25 1pd ... 0pd 2pd ... ... 23pd 25pd ...24pd a set of 52 indentation imprints for example: upper imprints No-s: 1, 6÷9, 11÷18 - aggregate KASPERKIEWICZ
No.1 No.7 No-s: 1, 7 ... - aggregate KASPERKIEWICZ
No.3 No.3 – air void edge KASPERKIEWICZ
concrete ... (time effect observations) KASPERKIEWICZ
HV – approx.: ( rock ) D . . = 7 00006 δ 1700 MPa 4300 ( test No.: 5sR9 ) 2700 5300 165 (No.1) 170 (No.6) F 1 . 85437 F = HV 2 D δ KASPERKIEWICZ
HV – approx.: ( cement paste ) 650 1500 470 MPa 1000 KASPERKIEWICZ
( a sample under consideration ) 600 700 HV – approx.: 1400 500 MPa 1000 164 (No.0) KASPERKIEWICZ
it is possible to evaluatethe strength of the material; what about theidentification of its composition? KASPERKIEWICZ
Acoustic Signal Sensor AEMonitoringSystem AE Signaldetection,recording,etc. SoundWave SoundWave IndentationNoiseSource AcousticEmissionWave KASPERKIEWICZ
( signal from the Test No.: 5sR9 05 ) amplitude: -1.5 to +1.5 V time: 0 to 5 s KASPERKIEWICZ
time: 5 s KASPERKIEWICZ
time: 2 s KASPERKIEWICZ
time: 2 s KASPERKIEWICZ
time: 0.5 s KASPERKIEWICZ
time: 0.3 s KASPERKIEWICZ
time: 0.14 s KASPERKIEWICZ
time: 0.003 s KASPERKIEWICZ
time: 0.4 ms KASPERKIEWICZ
time: 0.1 ms ( about 100 μs ) KASPERKIEWICZ
( no silica CP ) ( silica CP ) ( stone aggregate ) KASPERKIEWICZ
( signal transformation ) KASPERKIEWICZ
Different possibilities of AE signal representations Natural representation Fourier, (FT, FFT) Windowed Fourier Wavelet analysis KASPERKIEWICZ
initial 440 ms KASPERKIEWICZ
time [ms] time: 0.4 ms KASPERKIEWICZ
t[ms] ( Test No.: 5sR9 05 ) H (375kHz÷39kHz) M (46kHz÷18kHz) NOISE L (6kHz÷4kHz) KASPERKIEWICZ
lzdH - No. of events in range HlzdM - No. of events in range MlzdL – No. ... etc. senHsenMsenL sazHsazMsazL - ... amplitude in range L serial No. indent class (e.g. "a", "cp1", ...)material composition ... etc. KASPERKIEWICZ
tests results database ( in Excel ) aggregate cement paste ITZ KASPERKIEWICZ
( Machine Learning ) KASPERKIEWICZ
Rec. No. 219 air content 7.3%fc28 45 MPaair voids spacing 0.21 mmaggregate ?...silica No Rec. No. 113 air content 2.4%fc28 27 MPaair voids spacing 0.23 mmaggregate ?...silica No Rec. No. 116 air content 4.5%fc28 26 MPaair voids spacing 0.25 mmaggregate granite...silica No Rec. No. 115 air content 4.5%fc28 26 MPaair voids spacing 0.25 mmaggregate granite...silica No Rec. No. 2 air content 6%fc28 ?air voids spacing 0.25 mmaggregate granite...silica Yes Rec. No. 114 air content 4.5%fc28 26 MPaair voids spacing 0.25 mmaggregate gravel...silica Yes Rec. No. 1 air content 2.4%fc28 37 MPaair voids spacing 0.35 mmaggregate basalt...silica No positive examples negative examples KASPERKIEWICZ
Machine Learning solutions: • AQ algorithms (Michalski) • See 5 (Quinlan) • WinMine (Microsoft) • ?... KASPERKIEWICZ
WinMine KASPERKIEWICZ
┌ 23.00 ≤ lzdM ≤ 233.50 ┐ AND ┌ sazM < 28.00 ┐ KASPERKIEWICZ
summary of the tests here there was no silica KASPERKIEWICZ
Microindentationand AE (Acoustic Emission) observations make possible identification of structural characteristics of concrete materials. In particular possible was an indirect identification of a silica additive presence in hardened concrete. It is expected that the same approach could be used to discriminate signals in aggregate grains (stone) from those and in cement paste or mortar. The procedure involves AE signal transformation followed by machine learning rules detection processing, resulting in hypotheses formulated in everyday language. KASPERKIEWICZ
The experiments should be continued, aimed - e.g. – to establishing what are optimal settings of AE data acquisition system, structural points better identification, selection of the proper procedure timing, etc. The proposed procedure may by important for hardened concrete diagnostics, perhaps also in case of certain forensic analysis situations, when the problem is to find out whether a silica fume was actually used as a component of a given concrete mix or not. KASPERKIEWICZ