480 likes | 565 Views
An Application of Coding Theory into Experimental Design. A Short Course at Tamkang University Taipei, Taiwan, R.O.C. March 7-9 2006. Shigeichi Hirasawa. Department of Industrial and Management Systems Engineering, School of Science and Engineering , Waseda University. 1. Introduction.
E N D
An Application of Coding Theory into Experimental Design A Short Course at Tamkang University Taipei, Taiwan, R.O.C. March 7-9 2006 Shigeichi Hirasawa Department of Industrial and Management Systems Engineering, School of Science and Engineering , Waseda University
1.1 Abstract 符号理論 実験計画 Experimental Design Coding Theory 直交配列 Error-Correcting Codes (ECCs) Orthogonal Arrays (OAs) close relation Hamming codes, BCH codes RS codes etc. 直交表 L8 table of OA L8 etc. ・ relations between OAs and ECCs ・ the table of OAs and Hamming codes ・ the table of OAs + allocation
1.2 Outline 1.Introduction 2.Preliminary 3.Relation between ECCs and OAs 4.Conclusion 序論 準備 結論
Experimental Design 実験計画法
2.1 Experimental Design (実験計画法) 2.1.1Experimental Design Ex.) 要因A ・ Factor A (materials) A0(A company),A1(B company) a Ratio of Defective Products 要因B ・Factor B (machines) B0(new),B1(old) 要因C ・Factor C (temperatures) C0(100℃),C1(200℃) ・How the level of factors affects a ration of defective products ? ・Which is the best combination of levels ?
完全配列 Complete Array experiments with all combination of levels A B C experiment with A0,B0,C0 実験 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Experiment ① ② ③ ④ ⑤ ⑥ ⑦ ⑧
直交配列 Orthogonal Array (OA) : OA(M, n, s,τ) (s=2) 部分空間 subset (subspace) of complete array A B C 011 001 Experiment ① 0 0 0 0 1 1 1 0 1 1 1 0 101 111 ② ③ 000 010 ④ 100 110 強さ strengthτ=2 every 2 columns contains each 2-tuple exactly same times as row
直交配列 Orthogonal Array (OA) : OA(M, n, s,τ) (s=2) 部分空間 subset (subspace) of complete array A B C 011 001 Experiment ① 0 0 0 0 1 1 1 0 1 1 1 0 101 111 ② ③ 000 010 ④ 100 110 強さ strengthτ=2 every 2 columns contains each 2-tuple exactly same times as row
直交配列 Orthogonal Array (OA) : OA(M, n, s,τ) (s=2) 部分空間 subset (subspace) of complete array A B C 011 001 Experiment ① 0 0 0 0 1 1 1 0 1 1 1 0 101 111 ② ③ 000 010 ④ 100 110 強さ strengthτ=2 every 2 columns contains each 2-tuple exactly same times as row
直交配列 Orthogonal Array (OA) : OA(M, n, s,τ) (s=2) 部分空間 subset (subspace) of complete array A B C 011 001 Experiment ① 0 0 0 0 1 1 1 0 1 1 1 0 101 111 ② ③ 000 010 ④ 100 110 強さ strengthτ=2 every 2 columns contains each 2-tuple exactly same times as row
2.1.2Construction Problem of OAs 因子数 the number of factors n=3 Parameters of OAs A B C 因子数 ・the number of factors n ① 0 0 0 実験回数 ② 0 1 1 ・the number of runsM 実験回数 the number of runsM=4 強さ ③ 1 0 1 ・strengthτ=2t trade off ④ 1 1 0 this can treat t-th order interaction effect 強さ strength τ=2 Construction problem of OAs is to construct OAs with as few as possible number of runs, given the number of factors and strength (n,τ → min M)
2.1.3Generator Matrix(生成行列) Generator Matrix of an OA : G Ex.) orthogonal array { 000 , 011 , 101 , 110 } A B C A B C 0 1 1 (○,○,○) = (□,□) 1 0 1 OA each k-tuple (k=2) based on{0,1}22k=M generator matrix G To construct OAs is to construct generator matrix
2.1.3Generator Matrix(生成行列) Generator Matrix of an OA : G Ex.) orthogonal array { 000 , 011 , 101 , 110 } A B C A B C 0 1 1 ( 0, 0, 0 ) = ( 0,0 ) 1 0 1 OA each k-tuple (k=2) based on{0,1}22k=M generator matrix G To construct OAs is to construct generator matrix
2.1.3Generator Matrix(生成行列) Generator Matrix of an OA : G Ex.) orthogonal array { 000 , 011 , 101 , 110 } A B C A B C 0 1 1 ( 0, 1, 1 ) = ( 1,0 ) 1 0 1 OA each k-tuple (k=2) based on{0,1}22k=M generator matrix G To construct OAs is to construct generator matrix
2.1.3Generator Matrix(生成行列) Generator Matrix of an OA : G Ex.) orthogonal array { 000 , 011 , 101 , 110 } A B C A B C 0 1 1 ( 1, 0, 1 ) = ( 0,1 ) 1 0 1 OA each k-tuple (k=2) based on{0,1}22k=M generator matrix G To construct OAs is to construct generator matrix
2.1.3Generator Matrix(生成行列) Generator Matrix of an OA : G Ex.) orthogonal array { 000 , 011 , 101 , 110 } A B C A B C 0 1 1 ( 1, 1, 0 ) = ( 1,1 ) 1 0 1 OA each k-tuple (k=2) based on{0,1}22k=M generator matrix G To construct OAs is to construct generator matrix
Parameters of OAs and Generator Matrix : G Ex.) orthogonal arrays { 000 , 011 , 101 , 110 } the number of factors n=3 3 ・the number of factors n=3 0 1 1 G = ・the number of runs M=4 2 1 0 1 the number of runs M=22 ・strength τ=2 any 2 columns are linearly independent strengthτ=2
Parameters of OAs and Generator Matrix Ex.) orthogonal arrays { 000 , 011 , 101 , 110 } the number of factors n=3 3 ・the number of factors n=3 0 1 1 G = ・the number of runs M=4 2 1 0 1 the number of runs M=22 ・strength τ=2 any 2 columns are linearly independent 0 1 0 strengthτ=2 + ≠ 1 0 0
Parameters of OAs and Generator Matrix Ex.) orthogonal arrays { 000 , 011 , 101 , 110 } the number of factors n=3 3 ・the number of factors n=3 0 1 1 G = ・the number of runs M=4 2 1 0 1 the number of runs M=22 ・strength τ=2 any 2 columns are linearly independent 0 1 0 strengthτ=2 + ≠ 1 1 0
Parameters of OAs and Generator Matrix Ex.) orthogonal arrays { 000 , 011 , 101 , 110 } the number of factors n=3 3 ・the number of factors n=3 0 1 1 G = ・the number of runs M=4 2 1 0 1 the number of runs M=22 ・strength τ=2 any 2 columns are linearly independent 1 1 0 strengthτ=2 + ≠ 0 1 0
OAs and ECCs[HSS ‘99] n G = m any τ=2t columns are linearly independent OAs with generator matrix G ECCs with parity check matrix G ・the number of factors n ・code length n ・the number of runs M=2m ・the number of information symbols k=n-m ・strength τ=2t ・minimum distance d=2t + 1 this can treat all t-th order interaction effect this can correct all t errors
2.2 Coding Theory (符号理論) 2.2.1 Coding Theory techniques to achieve reliable communication over noisy channel (ex. CD, cellar phones etc.) Ex.) 符号語 codewords 0 → 000 1 → 111 noise 000 100 0 0 encoder decoder channel
誤り訂正符号 Error-Correcting Codes 部分空間 subspace of linear vector space Ex.) 011 001 0 000 101 111 1 111 000 010 符号語 100 110 codeword
2.2.2Construction Problem of ECCs : (n, k, d) code the number of information symbolsk=1 Parameters of ECCs 符号長 ・code length n 0 000 情報記号数 ・the number of information symbolsk 1 111 trade off 最小距離 minimum distance d=3 ・minimum distance d=2t + 1 this can correct 1 error this can correct t errors Construction problem of ECCs is to construct ECCs with as many as possible number of information symbols, given the code length and minimum distance (n, d → max k)
2.2.3Parity Check Matrix Parity Check Matrix of ECCs Ex.)(3,1,3) code { 000 , 111 } 0 1 1 1 0 1 parity check matrix H = codeword 000 111 0 1 1 1 0 1 0 1 1 1 0 1 00 00 = = HxT=0 To construct of linear codes is to construct parity check matrix
Parameters of ECCs and Parity Check Matrix code lengthn=3 Ex.)(3,1,3) code { 000 , 111 } the number of information symbols k=3 - 2 ・code length n=3 3 0 1 1 ・the number of information symbols k=1 H = 2 1 0 1 ・minimum distance d=3 any d-1=2 columns are linearly independent minimum distanced=2 +1
OAs and ECCs [HSS ‘99] n G = m any d-1=2t columns are linearly independent OAs with generator matrix G ECCs with parity check matrix G ・the number of factors n ・code length n ・the number of runsM=2m ・the number of information symbols n-m ・strength τ=2t ・minimum distance d=2t + 1 this can treat all t order interaction effect this can correct all t errors
3.1OAs and ECCs 0 1 1 G = 1 0 1 ECC with parity check matrix G OA with generator matrix G 011 011 001 001 101 101 111 111 000 010 000 010 100 110 100 110
OAs and ECCs [HSS ‘99] n G = m any 2t columns are linearly independent OAs with generator matrix G ECCs with parity check matrix G ・the number of factors n ・code length n ・the number of runs M=2m ・the number of information symbols k=n-m ・strength τ=2t ・minimum distance d=2t + 1 this can treat all t order interaction effect this can correct all t errors
3.2Matrixin which any 2 columns are linearly independent ① an OA with strength τ=2,a linear code with minimum distance 0 1 ・・・ 0 1 1 1 n=7 0 0 0 1 1 1 1 G = 0 1 1 0 0 1 1 3 1 0 1 0 1 0 1
3.2Matrixin which any 2 columns are linearly independent ① an OA with strength τ=2,a linear code with minimum distance 0 1 ・・・ 0 1 1 1 n=7 0 0 0 1 1 1 1 G = 0 1 1 0 0 1 1 3 1 0 1 0 1 0 1 0 0 0 0 + 1 ≠ 0 1 0 0
3.2Matrixin which any 2 columns are linearly independent ② an OA with strength 2,a linear code with minimum distance 0 1 ・・・ 0 1 1 1 n=7 0 0 0 1 1 1 1 G = 0 1 1 0 0 1 1 3 1 0 1 0 1 0 1 ・table of OAL8 the number of factors 7,the number of runs 8,strength 2 ・(7,4,3)Hamming code code length 7, the number of information symbols 4, minimum distance 3
3.2Matrixin which any 2 columns are linearly independent ① an OA with strength 2,a linear code with minimum distance 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 G = 4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ・table of OAL16 the number of factors 15,the number of runs 16,strength 2 ・(15,11,3)Hamming code code length 15, the number of information symbols 11, minimum distance 3
Table of OAs + allocation 直交表 割付
3.3Example (Allocation to L8) 線点図 L8 Linear Graph 1 2 3 4 5 6 7 1 ① 0 0 0 0 0 0 0 ② 0 0 0 1 1 1 1 7 3 5 ③ 0 1 1 0 0 1 1 ④ 0 1 1 1 1 0 0 6 2 4 ⑤ 1 0 1 0 1 0 1 ⑥ 1 0 1 1 0 1 0 ⑦ 1 1 0 0 1 1 0 ⑧ 1 1 0 1 0 0 1
3.3Example (Allocation to L8) 線点図 L8 Linear Graph A B C D E factor A 1 2 3 4 5 6 7 1 ① 0 0 0 0 0 0 0 E A×B ② 0 0 0 1 1 1 1 7 3 5 ③ 0 1 1 0 0 1 1 ④ 0 1 1 1 1 0 0 6 2 4 ⑤ 1 0 1 0 1 0 1 ⑥ 1 0 1 1 0 1 0 D C B ⑦ 1 1 0 0 1 1 0 ⑧ 1 1 0 1 0 0 1
3.4Construction Problem(General Case) Ex.) factorsA,B,C,D,E Special Case an OA with as few as possible of runs ・the number of factors n=5 ・strength τ=4 this can treat all L=2 order interaction effects(A×B,A×C,・・・,D×E) General Case an OA with as few as possible of runs ・the number of factorsn=5 ・ ? this can treat partial 2order interaction effects(A×B)
3.5Generator Matrix(General Case) Ex.) factorsA,B,C,D,E Special Case(A×B,A×C,・・・,D×E) any 4 columns are linearly independent A B C D E generator matrix G = General Case(A×B) ・ any 4 columns are linearly independent ・any 3 columns which contain A, B are linearly independent A B C D E generator matrix G =
3.6Meaning of allocation Generator Matrix of L8 Projective Geometry (Linear Graph) 001 0 0 0 1 1 1 1 011 101 0 1 1 0 0 1 1 111 1 0 1 0 1 0 1 010 110 100
3.7Meaning of allocation Generator Matrix of L8 Projective Geometry (Linear Graph) factor A 001 A B C D E A×B 0 0 0 1 1 1 1 011 101 0 1 1 0 0 1 1 E 111 1 0 1 0 1 0 1 010 110 100 D if C, D, E are not allocated to this column, any 3 columns which contain A, B are linearly independent C B
4.1Conclusion 1.Construction problems ECCs : n, d → max k OAs : n, τ → min M 2.A generator matrix of OAs is equal to a parity check matrix of ECCs. 3.Relations of each columns in construction problems of OAs are more complicate than in those of ECCs.
参考文献) [Taka79] I.Takahashi, “Combinatorial Theory and its Applications (in Japanese), ” Iwanami shoten, Tokyo, 1979 [HSS99] A.S.Hedayat,N.J.A.Sloane,and J.Stufken,“ Orthogonal Arrays : Theory and Applications,” Springer,New York,1999. [SMH05] T.Saito, T.Matsushima, and S.Hirasawa, “A Note on Construction of Orthogonal Arrays with Unequal Strength from Error-Correcting Codes,” to appear in IEICE Trans. Fundamentals. [MW67] B.Masnic, and J.K.Wolf, “On Linear Unequal Error protection Codes,” IEEE Trans. Inform Theory, Vol.IT-3, No.4, pp.600-607, Oct.1967