1 / 48

An Application of Coding Theory into Experimental Design

An Application of Coding Theory into Experimental Design. A Short Course at Tamkang University Taipei, Taiwan, R.O.C. March 7-9 2006. Shigeichi Hirasawa. Department of Industrial and Management Systems Engineering, School of Science and Engineering , Waseda University. 1. Introduction.

sanaa
Download Presentation

An Application of Coding Theory into Experimental Design

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. An Application of Coding Theory into Experimental Design A Short Course at Tamkang University Taipei, Taiwan, R.O.C. March 7-9 2006 Shigeichi Hirasawa Department of Industrial and Management Systems Engineering, School of Science and Engineering , Waseda University

  2. 1.Introduction 序論

  3. 1.1 Abstract 符号理論 実験計画 Experimental Design Coding Theory 直交配列 Error-Correcting Codes (ECCs) Orthogonal Arrays (OAs) close relation Hamming codes, BCH codes RS codes etc. 直交表 L8 table of OA L8 etc. ・ relations between OAs and ECCs ・ the table of OAs and Hamming codes ・ the table of OAs + allocation

  4. 1.2 Outline 1.Introduction 2.Preliminary 3.Relation between ECCs and OAs 4.Conclusion 序論 準備 結論

  5. 2.Preliminary 準備

  6. Experimental Design 実験計画法

  7. 2.1 Experimental Design (実験計画法) 2.1.1Experimental Design Ex.) 要因A ・ Factor A (materials) A0(A company),A1(B company) a Ratio of Defective Products 要因B ・Factor B (machines) B0(new),B1(old) 要因C ・Factor C (temperatures) C0(100℃),C1(200℃) ・How the level of factors affects a ration of defective products ? ・Which is the best combination of levels ?

  8. 完全配列 Complete Array experiments with all combination of levels A  B  C experiment with A0,B0,C0 実験 0  0  0 0  0  1 0  1  0 0  1  1 1  0  0 1  0  1 1  1  0 1  1  1 Experiment ①    ②    ③    ④    ⑤    ⑥    ⑦    ⑧

  9. 直交配列 Orthogonal Array (OA) : OA(M, n, s,τ) (s=2) 部分空間 subset (subspace) of complete array A  B  C 011 001 Experiment ① 0  0  0 0  1  1 1  0  1 1  1  0 101 111    ②    ③ 000 010    ④ 100 110 強さ strengthτ=2 every 2 columns contains each 2-tuple exactly same times as row

  10. 直交配列 Orthogonal Array (OA) : OA(M, n, s,τ) (s=2) 部分空間 subset (subspace) of complete array A  B  C 011 001 Experiment ① 0  0  0 0  1  1 1  0  1 1  1  0 101 111    ②    ③ 000 010    ④ 100 110 強さ strengthτ=2 every 2 columns contains each 2-tuple exactly same times as row

  11. 直交配列 Orthogonal Array (OA) : OA(M, n, s,τ) (s=2) 部分空間 subset (subspace) of complete array A  B  C 011 001 Experiment ① 0  0  0 0  1  1 1  0  1 1  1  0 101 111    ②    ③ 000 010    ④ 100 110 強さ strengthτ=2 every 2 columns contains each 2-tuple exactly same times as row

  12. 直交配列 Orthogonal Array (OA) : OA(M, n, s,τ) (s=2) 部分空間 subset (subspace) of complete array A  B  C 011 001 Experiment ① 0  0  0 0  1  1 1  0  1 1  1  0 101 111    ②    ③ 000 010    ④ 100 110 強さ strengthτ=2 every 2 columns contains each 2-tuple exactly same times as row

  13. 2.1.2Construction Problem of OAs 因子数 the number of factors n=3 Parameters of OAs A  B  C 因子数 ・the number of factors n ① 0  0  0 実験回数    ② 0  1  1 ・the number of runsM 実験回数 the number of runsM=4 強さ    ③ 1  0  1 ・strengthτ=2t trade off    ④ 1  1  0 this can treat t-th order interaction effect 強さ strength τ=2 Construction problem of OAs is to construct OAs with as few as possible number of runs, given the number of factors and strength (n,τ → min M)

  14. 2.1.3Generator Matrix(生成行列) Generator Matrix of an OA : G Ex.) orthogonal array { 000 , 011 , 101 , 110 } A B C A B C 0 1 1 (○,○,○) = (□,□) 1 0 1 OA each k-tuple (k=2) based on{0,1}22k=M generator matrix G To construct OAs is to construct generator matrix

  15. 2.1.3Generator Matrix(生成行列) Generator Matrix of an OA : G Ex.) orthogonal array { 000 , 011 , 101 , 110 } A B C A B C 0 1 1 ( 0, 0, 0 ) = ( 0,0 ) 1 0 1 OA each k-tuple (k=2) based on{0,1}22k=M generator matrix G To construct OAs is to construct generator matrix

  16. 2.1.3Generator Matrix(生成行列) Generator Matrix of an OA : G Ex.) orthogonal array { 000 , 011 , 101 , 110 } A B C A B C 0 1 1 ( 0, 1, 1 ) = ( 1,0 ) 1 0 1 OA each k-tuple (k=2) based on{0,1}22k=M generator matrix G To construct OAs is to construct generator matrix

  17. 2.1.3Generator Matrix(生成行列) Generator Matrix of an OA : G Ex.) orthogonal array { 000 , 011 , 101 , 110 } A B C A B C 0 1 1 ( 1, 0, 1 ) = ( 0,1 ) 1 0 1 OA each k-tuple (k=2) based on{0,1}22k=M generator matrix G To construct OAs is to construct generator matrix

  18. 2.1.3Generator Matrix(生成行列) Generator Matrix of an OA : G Ex.) orthogonal array { 000 , 011 , 101 , 110 } A B C A B C 0 1 1 ( 1, 1, 0 ) = ( 1,1 ) 1 0 1 OA each k-tuple (k=2) based on{0,1}22k=M generator matrix G To construct OAs is to construct generator matrix

  19. Parameters of OAs and Generator Matrix : G Ex.) orthogonal arrays { 000 , 011 , 101 , 110 } the number of factors n=3 3 ・the number of factors n=3 0 1 1 G = ・the number of runs M=4 2 1 0 1 the number of runs M=22 ・strength τ=2 any 2 columns are linearly independent strengthτ=2

  20. Parameters of OAs and Generator Matrix Ex.) orthogonal arrays { 000 , 011 , 101 , 110 } the number of factors n=3 3 ・the number of factors n=3 0 1 1 G = ・the number of runs M=4 2 1 0 1 the number of runs M=22 ・strength τ=2 any 2 columns are linearly independent 0 1 0 strengthτ=2 + ≠ 1 0 0

  21. Parameters of OAs and Generator Matrix Ex.) orthogonal arrays { 000 , 011 , 101 , 110 } the number of factors n=3 3 ・the number of factors n=3 0 1 1 G = ・the number of runs M=4 2 1 0 1 the number of runs M=22 ・strength τ=2 any 2 columns are linearly independent 0 1 0 strengthτ=2 + ≠ 1 1 0

  22. Parameters of OAs and Generator Matrix Ex.) orthogonal arrays { 000 , 011 , 101 , 110 } the number of factors n=3 3 ・the number of factors n=3 0 1 1 G = ・the number of runs M=4 2 1 0 1 the number of runs M=22 ・strength τ=2 any 2 columns are linearly independent 1 1 0 strengthτ=2 + ≠ 0 1 0

  23. OAs and ECCs[HSS ‘99] n G = m any τ=2t columns are linearly independent OAs with generator matrix G ECCs with parity check matrix G ・the number of factors n ・code length n ・the number of runs M=2m ・the number of information symbols k=n-m ・strength τ=2t ・minimum distance d=2t + 1 this can treat all t-th order interaction effect this can correct all t errors

  24. Coding Theory

  25. 2.2 Coding Theory (符号理論) 2.2.1 Coding Theory techniques to achieve reliable communication over noisy channel (ex. CD, cellar phones etc.) Ex.) 符号語 codewords 0 → 000 1 → 111 noise 000 100 0 0 encoder decoder channel

  26. 誤り訂正符号 Error-Correcting Codes 部分空間 subspace of linear vector space Ex.) 011 001 0 000 101 111 1 111 000 010 符号語 100 110 codeword

  27. 2.2.2Construction Problem of ECCs : (n, k, d) code the number of information symbolsk=1 Parameters of ECCs 符号長 ・code length n 0 000 情報記号数 ・the number of information symbolsk 1 111 trade off 最小距離 minimum distance d=3 ・minimum distance d=2t + 1 this can correct 1 error this can correct t errors Construction problem of ECCs is to construct ECCs with as many as possible number of information symbols, given the code length and minimum distance (n, d → max k)

  28. 2.2.3Parity Check Matrix Parity Check Matrix of ECCs Ex.)(3,1,3) code { 000 , 111 } 0 1 1 1 0 1 parity check matrix H = codeword 000 111 0 1 1 1 0 1 0 1 1 1 0 1 00 00 = = HxT=0 To construct of linear codes is to construct parity check matrix

  29. Parameters of ECCs and Parity Check Matrix code lengthn=3 Ex.)(3,1,3) code { 000 , 111 } the number of information symbols k=3 - 2 ・code length n=3 3 0 1 1 ・the number of information symbols k=1 H = 2 1 0 1 ・minimum distance d=3 any d-1=2 columns are linearly independent minimum distanced=2 +1

  30. OAs and ECCs [HSS ‘99] n G = m any d-1=2t columns are linearly independent OAs with generator matrix G ECCs with parity check matrix G ・the number of factors n ・code length n ・the number of runsM=2m ・the number of information symbols n-m ・strength τ=2t ・minimum distance d=2t + 1 this can treat all t order interaction effect this can correct all t errors

  31. 3.Relation Between OAs and ECCs 関係

  32. 3.1OAs and ECCs 0 1 1 G = 1 0 1 ECC with parity check matrix G OA with generator matrix G 011 011 001 001 101 101 111 111 000 010 000 010 100 110 100 110

  33. OAs and ECCs [HSS ‘99] n G = m any 2t columns are linearly independent OAs with generator matrix G ECCs with parity check matrix G ・the number of factors n ・code length n ・the number of runs M=2m ・the number of information symbols k=n-m ・strength τ=2t ・minimum distance d=2t + 1 this can treat all t order interaction effect this can correct all t errors

  34. Table of OAs and Hamming Codes 直交表

  35. 3.2Matrixin which any 2 columns are linearly independent ① an OA with strength τ=2,a linear code with minimum distance 0 1 ・・・ 0 1 1 1 n=7 0 0 0 1 1 1 1 G = 0 1 1 0 0 1 1 3 1 0 1 0 1 0 1

  36. 3.2Matrixin which any 2 columns are linearly independent ① an OA with strength τ=2,a linear code with minimum distance 0 1 ・・・ 0 1 1 1 n=7 0 0 0 1 1 1 1 G = 0 1 1 0 0 1 1 3 1 0 1 0 1 0 1 0 0 0 0 + 1 ≠ 0 1 0 0

  37. 3.2Matrixin which any 2 columns are linearly independent ② an OA with strength 2,a linear code with minimum distance 0 1 ・・・ 0 1 1 1 n=7 0 0 0 1 1 1 1 G = 0 1 1 0 0 1 1 3 1 0 1 0 1 0 1 ・table of OAL8 the number of factors 7,the number of runs 8,strength 2 ・(7,4,3)Hamming code code length 7, the number of information symbols 4, minimum distance 3

  38. 3.2Matrixin which any 2 columns are linearly independent ① an OA with strength 2,a linear code with minimum distance 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 G = 4 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ・table of OAL16 the number of factors 15,the number of runs 16,strength 2 ・(15,11,3)Hamming code code length 15, the number of information symbols 11, minimum distance 3

  39. Table of OAs + allocation 直交表 割付

  40. 3.3Example (Allocation to L8) 線点図 L8 Linear Graph 1 2 3 4 5 6 7 1 ① 0 0 0 0 0 0 0    ② 0 0 0 1 1 1 1 7 3 5    ③ 0 1 1 0 0 1 1    ④ 0 1 1 1 1 0 0 6 2 4    ⑤ 1 0 1 0 1 0 1    ⑥ 1 0 1 1 0 1 0    ⑦ 1 1 0 0 1 1 0    ⑧ 1 1 0 1 0 0 1

  41. 3.3Example (Allocation to L8) 線点図 L8 Linear Graph A B C D E factor A 1 2 3 4 5 6 7 1 ① 0 0 0 0 0 0 0 E A×B    ② 0 0 0 1 1 1 1 7 3 5    ③ 0 1 1 0 0 1 1    ④ 0 1 1 1 1 0 0 6 2 4    ⑤ 1 0 1 0 1 0 1    ⑥ 1 0 1 1 0 1 0 D C B    ⑦ 1 1 0 0 1 1 0    ⑧ 1 1 0 1 0 0 1

  42. 3.4Construction Problem(General Case) Ex.) factorsA,B,C,D,E Special Case an OA with as few as possible of runs ・the number of factors n=5 ・strength τ=4 this can treat all L=2 order interaction effects(A×B,A×C,・・・,D×E) General Case an OA with as few as possible of runs ・the number of factorsn=5 ・  ? this can treat partial 2order interaction effects(A×B)

  43. 3.5Generator Matrix(General Case) Ex.) factorsA,B,C,D,E Special Case(A×B,A×C,・・・,D×E) any 4 columns are linearly independent A B C D E generator matrix G = General Case(A×B) ・ any 4 columns are linearly independent ・any 3 columns which contain A, B are linearly independent A B C D E generator matrix G =

  44. 3.6Meaning of allocation Generator Matrix of L8 Projective Geometry (Linear Graph) 001 0 0 0 1 1 1 1 011 101 0 1 1 0 0 1 1 111 1 0 1 0 1 0 1 010 110 100

  45. 3.7Meaning of allocation Generator Matrix of L8 Projective Geometry (Linear Graph) factor A 001 A B C D E A×B 0 0 0 1 1 1 1 011 101 0 1 1 0 0 1 1 E 111 1 0 1 0 1 0 1 010 110 100 D if C, D, E are not allocated to this column, any 3 columns which contain A, B are linearly independent C B

  46. 4.Conclusion

  47. 4.1Conclusion 1.Construction problems ECCs : n, d → max k OAs : n, τ → min M 2.A generator matrix of OAs is equal to a parity check matrix of ECCs. 3.Relations of each columns in construction problems of OAs are more complicate than in those of ECCs.

  48. 参考文献) [Taka79] I.Takahashi, “Combinatorial Theory and its Applications (in Japanese), ” Iwanami shoten, Tokyo, 1979 [HSS99] A.S.Hedayat,N.J.A.Sloane,and J.Stufken,“ Orthogonal Arrays : Theory and Applications,” Springer,New York,1999. [SMH05] T.Saito, T.Matsushima, and S.Hirasawa, “A Note on Construction of Orthogonal Arrays with Unequal Strength from Error-Correcting Codes,” to appear in IEICE Trans. Fundamentals. [MW67] B.Masnic, and J.K.Wolf, “On Linear Unequal Error protection Codes,” IEEE Trans. Inform Theory, Vol.IT-3, No.4, pp.600-607, Oct.1967

More Related