1 / 41

High-Pressure High-Temperature Synthesis of Si-C-N Phases

High-Pressure High-Temperature Synthesis of Si-C-N Phases. Miria Andrade 1 , Dmytro Dzivenko 1 , Gerhard Miehe 1 , Peter Kroll 2 , Stefan Lauterbach 1 , Hans-Joachim Kleebe 1 and Ralf Riedel 1. 1 Material- und Geowissenschaften, Technische Universität Darmstadt, Darmstadt, Germany.

sanam
Download Presentation

High-Pressure High-Temperature Synthesis of Si-C-N Phases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High-Pressure High-Temperature Synthesis of Si-C-N Phases Miria Andrade1, Dmytro Dzivenko1, Gerhard Miehe1, Peter Kroll2, Stefan Lauterbach1, Hans-Joachim Kleebe1and Ralf Riedel1 1 Material- und Geowissenschaften, Technische Universität Darmstadt, Darmstadt, Germany 2 Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, USA

  2. Contents • Introduction /Motivation • Previous theoretical work • HP/HT Synthesis of Si-C-N Phases • Summary

  3. N “C3N4“ γ-Si3N4 SiC2N4 Si2CN4 Si Cd Introduction/ Motivation B ~ 425-496 GPa Harder than diamond? B = 290 GPa HV = 30-43 GPa B = 442 GPa HV ~ 96 GPa

  4. SiC2N4 and Si2CN4 Phases -SiMe3Cl SiCl4 + Me3Si-NCN-SiMe3 [Si(NCN)2]n(NCNSiMe3)x 350°C Vacuum SiC2N4 400-600°C 900°C SiC2N4 β-SiC2N4 (HT) Si2CN4 -C2N2 -N2 150-160°C α-SiC2N4 (LT) R. Riedel et al., Angew. Chem. Int. Ed. Engl., 1997, 36, 603-606

  5. SiC2N4 and Si2CN4 Phases b-SiC2N4≡ Si(N=C=N)2 Cubic (Pn3m)  = 1.51 g/cm3 Si2CN4 ≡ Si2N2(N=C=N) Orthorhombic (Aba2)  = 2.32 g/cm3

  6. P=10-20 GPa P=20-30 GPa Some Theoretical Work on HP/HT Behavior of Si-C-N Phases HP-Si2N2(NCN)Pc SiN4-tetr. SiN6-oct. B0 = 133 GPa Si2N2(NCN) Aba2 SiN4-tetr. B0 = 110 GPa α-Si(NCN)2 P4322 SiN4-tetr. B0 = 19 GPa HP-Si(NCN)2P4322 SiN6-oct. B0 = 84 GPa P. Kroll, J. Gracia, R. Riedel, Mater. Res. Soc. Symp. Proc. 1040 (2008)

  7. Theoretical Work on Spinel-type Si-C-N Phases W. Y. Ching, S. D. Mo, I. Tanaka, M. Yoshiya, Phys. Rev. B 63 (2001) J. E. Lowther, M. Amkreutz, T. Frauenheim, E. Kroke, and R. Riedel, Phys. Rev. B 68 (2003) H. Wang, Y. Chen, Y. Kaneta, S. Iwata, Eur. Phys. J. B 59 (2007) X. Zhang, Z. Chen, H. Du, C. Yang, M. Ma, J. He, Y. Tian, R. Liu, J. of Appl. Phys. 103 (2008) H.J. Du, L.C. Guo, D.C. Li, D.L . Yu, J.L He, Chin. Phys. Lett. 26 (2009)

  8. HP/HT Behaviour of Si-C-N Phases HP/HT Synthesis Shock Wave Multi-Anvil Press LH-DAC 30 GPa 10 – 22 GPa 27 – 33 GPa

  9. Multi-Anvil Experiments P = 22 GPa T = 1500°C t = 5-30 min Freiberg High Pressure Research Centre (2009)

  10. Multi-Anvil Experiments Freiberg High Pressure Research Centre (2009) SiC2N4 Multi-anvil assembly (10M) 22 GPa 1500°C/5 min MAC201 1500°C/30 min MAC202 Quenching

  11. Characterization of HP/HT Samples • Identification of phases: • Synchrotron Radiation X-Ray Diffraction • Determination of the composition: • EDX-TEM • EELS-TEM • Rietveld structure refinement

  12. Structural Characterization MAC202 22 GPa – 1500°C/ 30 min D  Diamond MAC201 22 GPa – 1500°C/ 5 min G  Graphite  Spinel Synchrotron radiation (λ = 0.3654 Å)

  13. EDX-TEM Spinel-type phase Si, C, N and O have been detected semi-quantitatively by EDX. The composition with respect to C/N/O content should be confirmed by EELS measurements

  14. EELS-TEM Spinel-type phase Saturation prevented the observation of the C edge.

  15. EELS-TEM Spinel-type phase O : N = 0.2  0.03

  16. Si-C-N-(O) System Rietveld structure refinement MAC202 γ-Si-C-N-(O) + diamond Si2.40C0.40N3.33O0.66 [Si1.800.20]oct[Si0.60C0.40]tetN0.33O0.66

  17. γ-Si-C-N-(O) SixCyNzOw Thick samples (crystal size of 0.3 - 0.5 mm) might have caused saturation. Attempts to break the crystals were not successful.

  18. Multi-Anvil Experiments • Lower pressures (10 - 15 GPa) • Moderate temperatures (800 – 1200°C) • t = 30 min Freiberg High Pressure Research Centre (2011)

  19. Multi-Anvil Experiments Freiberg High Pressure Research Centre (2011) SiC2N4 Si2CN4 Al2O3-NaSiO3-Cement Mo 10 - 15 GPa ZrO2 Thermocouple 800 – 1200°C In2O3- Bi2O3 Si-C-N HD-BN Quenching Graphite furnace ZrO2 ‏ Mo

  20. Multi-Anvil Experiments Freiberg High-Pressure Research Centre (2011) In order to prevent oxygen contamination, the encapsulation procedure has been improved

  21. SiC2N4 (PK106) P = 10 GPa T = 825°C Partial crystallization of a-Si3N4 lMo = 0.7093 Å

  22. SiC2N4 (PK107) P = 10 GPa T = 945°C Amorphous lMo = 0.7093 Å

  23. HP/HT Behaviour of Si-C-N Phases 10 GPa a-Si3N4 → Amorphous • Decomposition of the ternary system • Amorphization upon increasing T

  24. Si2CN4 (PK104) a-Si3N4 b-Si3N4 P = 10 GPa T = 895°C lMo = 0.7093 Å

  25. Si2CN4 (PK105) P = 10 GPa T = 1080°C Platinum The sample was requenched 3x Amorphous lMo = 0.7093 Å

  26. HP/HT Behaviour of Si-C-N Phases 10 GPa a-b-Si3N4 → Amorphous • Decomposition of the ternary system • Amorphization upon increasing T

  27. Si2CN4 (PK108) P = 15 GPa T = 1110°C Partial crystallization of a-Si3N4 lMo = 0.7093 Å

  28. Si2CN4 (PK109) P = 15 GPa T = 1280°C b-Si3N4 + a-Si3N4 + SiO2 (stishovite) + Graphite + Pt lMo = 0.7093 Å

  29. b-Si3N4 → g-Si3N4 PK108 P = 15 GPa T = 1110°C PK109 P = 15 GPa T = 1280°C No transition to g-Si3N4! Togo, A. and Kroll, P., First-principles lattice dynamics calculations of the phase boundary between b-Si3N4 and g-Si3N4 at elevated temperatures and pressures. Journal of Computational Chemistry, 2008.

  30. HP/HT Behaviour of Si-C-N Phases 15 GPa a-Si3N4 → b-Si3N4 • Decomposition of the ternary system • Crystallization of Si3N4 upon increasing T

  31. HP/HT Behaviour of Si-C-N Phases • Higher pressures • Higher temperatures

  32. LH-DAC Experiments Starting Materials: SiC2N4 (SiC1.8N3.56O0.1) Si2CN4 (Si2C1.28N3.60O0.07) P = 27 - 33 GPa 1500 K < T < 2100 K Loading: MPI Mainz Heating: Laser Heating Facility Frankfurt In order to prevent hydrolysis of the starting materials, the DACs were loaded in the glovebox.

  33. SiC2N4 (Sample 1) P = 33 GPa T > 2000 K Synchrotron radiation λ= 0.3660 Å Spinel + KBr (pressure medium)

  34. Si2CN4 (Sample 2) P = 29 GPa T > 1500 K Synchrotron radiation λ= 0.3660 Å Spinel + KBr (pressure medium)

  35. Si2CN4 (Sample 2) P = 29 GPa T > 1500 K Synchrotron radiation λ= 0.3660 Å Spinel +Stishovite + KBr (pressure medium)

  36. Shock-wave Experiments Flyer-plate Apparatus FP_C2-01  SiC2N4 FP_S2-01  Si2CN4 Pressure: 30 GPa Temperature: extremely hot

  37. Shock-wave Experiments λ = 0.3654 Å C  Copper 3 diffraction peaks could not be indexed to any known phase!

  38. Shock-wave Experiments (TEM) • Amorphous + Graphite Phase • The phase detected by XRD could not be found by TEM! • Beam-sensitive phase? 10 nm

  39. Summary • Ambient pressure phase of Si(NCN)2 transforms into a spinel-type γ-SixCyNz(Ow)-phase at 22 GPa pressure and 1800 K together with formation of carbon phase as a side product. Rietveld refinement suggests Si2.40C0.40N3.33O0.66 as the composition. • Under lower pressures (10 – 15 GPa) and moderate temperatures, Si(NCN)2 and Si2N2(NCN) phases decompose into Si3N4, whereas amorphization takes place upon increasing temperature. • Oxygen and water-free atmosphere is a critical factor to be considered for the successful HP/HT synthesis of Si-C-N phases.

  40. Acknowledgements • T. Schlothauer, Dr. M. Schwarz, Prof. E. Kroke (TU Bergakademie Freiberg) • Dr. T. Palasyuk, Dr. M. Eremets (MPI-Mainz) • Dr. L. Bayarjargal (Uni-Frankfurt) • ESRF (ID31 and ID09A) • DFG/SPP1236 for financial support

  41. Thank you for • your attention!

More Related