1 / 13

CME trajectory deduced from cosmic ray measurements

CME trajectory deduced from cosmic ray measurements. K. Munakata, T. Kuwabara and J. W. Bieber. Geomagnetic & Cosmic-ray storms. CME, Shock. Cosmic ray storms isotropic intensity decreases Forbush Decrease anisotropy enhancements B×Gradient anisotropy ⇒ deduction of CME trajectory.

sancha
Download Presentation

CME trajectory deduced from cosmic ray measurements

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CME trajectory deduced from cosmic ray measurements K. Munakata, T. Kuwabara and J. W. Bieber

  2. Geomagnetic & Cosmic-ray storms CME, Shock Cosmic ray storms • isotropic intensitydecreases • Forbush Decrease • anisotropyenhancements • B×Gradient anisotropy ⇒ deduction of CME trajectory

  3. B×Gradientanisotropy : IMF unit vector : density gradient vector : Larmour radius ~0.2 AU for muons ーG⊥ pointing toward CME center

  4. Prototype Muon Detector Network 35 directions (Nagoya, Hobart, SaoMartinho) 1ry Energy 50~120 GeV Data used CMEs analyzed

  5. Observation 4/11 8/27 Gx Gy Gz

  6. Analysis Assume Gaussian CR density distribution, as… : depth : width Then gradient will be… Derive r using observed G(r) • Method 1 • Getrfrom observed G(r) every hour • Method 2 • Get trajectory by best-fitting the expected G(r) to • the observed

  7. Method 1 • Gobs • |Gobs| ⇒ r • Gobs orientation •   ⇒direction of • CME center • Location of CME center • (x,y,z in unit of l)

  8. 4/11 CME by Method1 • Moving direction • GSE lat.=48°, long.=193° • Velocity (using average SW • speed 650km/s for Vx…) • |V|=1000km/s • Width of CME • λ=0.10AU • Impact parameter at earth • D=0.017AU

  9. Method 2 Set the location of CME center at time t, as… Then the gradient at t will be… Find parameters which give…

  10. 4/11 CME by Method 2 • Moving direction • θ=60°,φ=183° • Velocity (Vx=650km/s) • V=1300km/s • Width of CME • λ=0.14AU • Impact parameter • D=0.035AU

  11. 8/27 CME by Metod 1 • Moving direction • θ=-12°,φ=212° • Velocity (using Vx=500km/s) • V=610km/s • Width of CME • λ=0.087AU • Impact parameter • D=0.12AU

  12. 8/27 CME by Method 2 • Moving direction • θ=ー10°,φ=224° • Velocity (Vx=500km/s) • V=700km/s • Width of CME • λ=0.14AU • Impact parameter • D=0.22AU

  13. Summary • 4/11 CME • CME center hit the earth moving northward • 8/27 CME • CME center passed the south of earth moving from east to west of the sun

More Related