1 / 36

Respiratory monitoring

Respiratory monitoring. DSP II – Final presentation. Some background…. Some background…. Project integrated in master thesis: “ Textile-integrated data-acquisition system” Prof. Dr. Ir. R. Puers Optional course in Biomedical technology

Download Presentation

Respiratory monitoring

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Respiratorymonitoring DSP II – Finalpresentation Hans De Clercq & Rogier Corthout

  2. Some background… Hans De Clercq & Rogier Corthout

  3. Some background… • Project integrated in master thesis: • “Textile-integrateddata-acquisition system” • Prof. Dr. Ir. R. Puers • Optionalcourse in Biomedicaltechnology • Applicationformonitoringbreathing disorders (e.g. SIDS) during sleep forbabies • Accelerometer-based design measuringmovementsduringbreathing • Startedfrom scratch  shapedourownDSP-project… Hans De Clercq & Rogier Corthout

  4. Some background… • Non-uniform chest/abdomen expansion measurementvariation of inclinationusingaccelerometersplacedsidewayson the chest/abdomen • XY-plane  modulus & angle Respiration g Hans De Clercq & Rogier Corthout

  5. Rawsignalvs gold standard Time (s) Time (samples @ 20 Hz) Accelerometer (angle) Spirometer Hans De Clercq & Rogier Corthout

  6. Objectives project DSP II Hans De Clercq & Rogier Corthout

  7. Block scheme Accelerometersignal Offset & noisecancellation Adaptive BPF Spirometer signal Nishimuraor N-points FFT Extraction dominant frequency RMS Decisionmaking (fuzzylogic) Breathingrate Breathingpattern Phase shift Errorrate Hans De Clercq & Rogier Corthout

  8. Signalconditioning • Noisecancellationfromlow-costaccelerometersoutsideusefulbreathing BW • Noiselimitsaccelerometerresolution: 1000μg/sqrt(Hz) • Analog filtering (simple RC)  anti-aliasing: sample frequency ADC ~ 10 Hz • Offset cancellation • Simple, butsteephigh-passIIR-filtering (cut-off ~ 0.01 Hz) • E.g. third order Chebychev • Normalizationwithreferencesignal Hans De Clercq & Rogier Corthout

  9. Adaptive filtering • Objectives: • Cancel the noiseinside the usefulbreathing BW, obtainingonly the “sine wave”-likesignal • Obtain the dominant frequency as a parameter for the pattern detector • Comparisonwith gold standard… Hans De Clercq & Rogier Corthout

  10. Adaptive filtering • Twomethodsexplored: • Nishimuramethod • STFT-method • Algorithmstestedon 3 different signals: • Sine wavewithGaussiannoise • 4 different frequencies/amplitudes • SNR < 2dB • Spirometermeasurement (gold standard) • Accelerometermeasurement (test signal) • … and thosetwocombined … Hans De Clercq & Rogier Corthout

  11. Nishimuramethod • Concept: adaptiveband-pass filter (IIR!) • Filter is tuned in real-time to maximize the output of the bandpass filter: • Basically, input is a “sine wave” with a variablefrequencycovered in noise… • Bandpass filtering for maximum output = lookingfor the frequency band with maximum power! Hans De Clercq & Rogier Corthout

  12. Input signal Time (s) Frequency (Hertz) Hans De Clercq & Rogier Corthout

  13. Nishimuramethod [2] • 2nd order IIR-filter: • α0determines the selectivity of the filter… Increasingα0 Hans De Clercq & Rogier Corthout

  14. Nishimuramethod [2] • 2nd order IIR-filter: • α0determines the selectivity of the filter • α1determines the center frequency of the pass-band: • α1 is iterativelytuned in real-time to maximize the output of the bandpass filter… Hans De Clercq & Rogier Corthout

  15. Nishimuramethod [3] • Iterative updating schemeforα1: • Gradientalgorithmtowards maximum output power • μdetermines the convergence speed, and is heavilyrelatedwithstability… μ Δ + x HB(z) G(z) u(k) y(k) Hans De Clercq & Rogier Corthout

  16. Nishimuramethod: results Hans De Clercq & Rogier Corthout

  17. Nishimuramethod: results • Update filter foreverynew input value • Computational efficiency  real-timeimplementationpossible μ Δ + x HB(z) G(z) u(k) y(k) Hans De Clercq & Rogier Corthout

  18. Nishimuramethod: results Hans De Clercq & Rogier Corthout

  19. Nishimuramethod: results • Limitedconvergence speed ifvaryingfrequency… • E.g. onsine wave signalwithvaryingfrequency and amplitude… Detected dominant frequency (Hz) Amplitude input signal Time (s) Time (s) Hans De Clercq & Rogier Corthout

  20. Nishimuramethod: results Hans De Clercq & Rogier Corthout

  21. Nishimuramethod: conclusion • Works “fine” onartificialsine wave signal… • Biomedicalsignalsaren’tdeterministic at all  limitedconvergence speed = bottleneck in detecting the dominant frequency • E.g. onsimple spirometer signal… Detected dominant frequency (Hz) Amplitude input signal Estimation of realfrequency Time (s) Time (s) Unstableworking regime… Hans De Clercq & Rogier Corthout

  22. STFT-method • After paper Hung & Bonnet… • Dividesignal in 51.2s (1024 samples) segmentswith 1/6th overlap betweenwindowsforedgecontinuity • Assumption: continuity over time window • Calculatespectrum and detectmaximum freq. of accelerometersignalf0 ∈ 0.1-1Hz • Filter the signal in pass-band:using a 4th order Butterworth filter… Hans De Clercq & Rogier Corthout

  23. STFT-method [2] Hans De Clercq & Rogier Corthout

  24. STFT-method [3] • E.g. on spirometersignal (trivialonsine wave) frequency time lesssmearing out of low breathingfrequencies Hans De Clercq & Rogier Corthout

  25. STFT-method [4] • E.g. appliedon spirometer signal… • Limitedfrequencyresolution • Butstill more reliablethanNishimurafor long term monitoring… Filteredsignal Detectedfrequency Detected dominant frequency (Hz) Amplitude signal Time (s) Time (s) Hans De Clercq & Rogier Corthout

  26. Comparisonusingaccelerometers • Similarresults: • STFT more reliable and intuitive • Nishimura hard real-timepotential… •  STFT seems to be the wisestchoiceforlong-termapplications!  Original signal Amplitude signal  Filtered (STFT method) Detected dominant frequency (Hz) Amplitude signal Time (s) Time (s)  Filtered (Nishimura) Detected dominant frequency (Hz) Amplitude signal Time (s) Time (s) Hans De Clercq & Rogier Corthout

  27. Comparison of performance onspiro & accelero Accelerometersignal Spirometer signal FilteredsignalusingSTFT DetectedfrequencyusingSTFT Consistent detectiononbothsignals FilteredsignalusingNishimura DetectedfrequencyusingNishimura Inconsistent detectiondue to unstablebehaviour… Hans De Clercq & Rogier Corthout

  28. Information processing • Dominant frequency (supra) • RMS-value of BP-filteredsignals • Phase shift with gold standard • Normallyconsistentlysmallduringquietbreathing [GOLLEE] • Exception: transient/fastmovement, e.g. forcedexpiration (coughing) • Implemented, butnotyetusedforthisapplication… Hans De Clercq & Rogier Corthout

  29. Decisionmaking • Determination of breathingpatternfromprocessedinformation • Clustering of sampledvaluesfor all parameters usingfuzzytechniques  Advantage: clustering techniquescanrevealstructures in data without relyingonassumptionscommon to conventionalstatisticalmethods, such as the underlyingstatistical distribution Hans De Clercq & Rogier Corthout

  30. Decisionmaking [2] • Data set to beclustered: • Every time sample has itsmembershipfunctionμik: Cluster variables 1…n Time samples k=1…N Hans De Clercq & Rogier Corthout

  31. Decisionmaking [3] • Objective is to minimize the fuzzyc-meansfunctional: • Implementation of Gustaf-Kesselsonalgorithm in Matlab • Complex iterativealgebraicproblem, furthermathematical details omitted… • Only input parameter: expectednumber of clusters c Membershipfunction of sample k to cluster i Distance of sample k to center of cluster i Hans De Clercq & Rogier Corthout

  32. Decisionmaking [4] • Output of algorithm: • Partition matrix with allmembershipfunctionsU • Cluster prototype matrix V with cluster centers • Cluster covariance matrix F Cluster number 1…c Time samples k=1…N Cluster number 1…c Cluster variables k=1…n Cluster number 1…c Cluster variables k=1…n Hans De Clercq & Rogier Corthout

  33. Results and discussion • Detectionmean amplitude or average power per breathingpattern • Applicationonartificial test signalsobtain low errorratesduring clustering: • ε < 15% usingNishimura • ε < 5% using STFT-BPF! Hans De Clercq & Rogier Corthout

  34. Results and discussion [2] Long-termmeasurementusingonlyaccelerometers… Cluster number boxplot dom. freq. point cloud Heavy breathing Quietbreathing RMS STFT-BPF output boxplot RMS No breathing Cluster number Dominant frequency (STFT) Hans De Clercq & Rogier Corthout

  35. Futurework & potential… • Gustaf-Kesselson starts with random cluster centers  usestatisticalinformation to initialize clustering more reliably • Expandfrequencydetection & fuzzy clustering to othersignals (ECG, oximetry,…) in order to: • Obtain redundant measurements  increasereliability • Examine the correlationbetweenthosesignalsduringapnoea Hans De Clercq & Rogier Corthout

  36. Respiratorymonitoring DSP II – Intermediatepresentation Hans De Clercq & Rogier Corthout

More Related