380 likes | 686 Views
Respiratory monitoring. DSP II – Final presentation. Some background…. Some background…. Project integrated in master thesis: “ Textile-integrated data-acquisition system” Prof. Dr. Ir. R. Puers Optional course in Biomedical technology
E N D
Respiratorymonitoring DSP II – Finalpresentation Hans De Clercq & Rogier Corthout
Some background… Hans De Clercq & Rogier Corthout
Some background… • Project integrated in master thesis: • “Textile-integrateddata-acquisition system” • Prof. Dr. Ir. R. Puers • Optionalcourse in Biomedicaltechnology • Applicationformonitoringbreathing disorders (e.g. SIDS) during sleep forbabies • Accelerometer-based design measuringmovementsduringbreathing • Startedfrom scratch shapedourownDSP-project… Hans De Clercq & Rogier Corthout
Some background… • Non-uniform chest/abdomen expansion measurementvariation of inclinationusingaccelerometersplacedsidewayson the chest/abdomen • XY-plane modulus & angle Respiration g Hans De Clercq & Rogier Corthout
Rawsignalvs gold standard Time (s) Time (samples @ 20 Hz) Accelerometer (angle) Spirometer Hans De Clercq & Rogier Corthout
Objectives project DSP II Hans De Clercq & Rogier Corthout
Block scheme Accelerometersignal Offset & noisecancellation Adaptive BPF Spirometer signal Nishimuraor N-points FFT Extraction dominant frequency RMS Decisionmaking (fuzzylogic) Breathingrate Breathingpattern Phase shift Errorrate Hans De Clercq & Rogier Corthout
Signalconditioning • Noisecancellationfromlow-costaccelerometersoutsideusefulbreathing BW • Noiselimitsaccelerometerresolution: 1000μg/sqrt(Hz) • Analog filtering (simple RC) anti-aliasing: sample frequency ADC ~ 10 Hz • Offset cancellation • Simple, butsteephigh-passIIR-filtering (cut-off ~ 0.01 Hz) • E.g. third order Chebychev • Normalizationwithreferencesignal Hans De Clercq & Rogier Corthout
Adaptive filtering • Objectives: • Cancel the noiseinside the usefulbreathing BW, obtainingonly the “sine wave”-likesignal • Obtain the dominant frequency as a parameter for the pattern detector • Comparisonwith gold standard… Hans De Clercq & Rogier Corthout
Adaptive filtering • Twomethodsexplored: • Nishimuramethod • STFT-method • Algorithmstestedon 3 different signals: • Sine wavewithGaussiannoise • 4 different frequencies/amplitudes • SNR < 2dB • Spirometermeasurement (gold standard) • Accelerometermeasurement (test signal) • … and thosetwocombined … Hans De Clercq & Rogier Corthout
Nishimuramethod • Concept: adaptiveband-pass filter (IIR!) • Filter is tuned in real-time to maximize the output of the bandpass filter: • Basically, input is a “sine wave” with a variablefrequencycovered in noise… • Bandpass filtering for maximum output = lookingfor the frequency band with maximum power! Hans De Clercq & Rogier Corthout
Input signal Time (s) Frequency (Hertz) Hans De Clercq & Rogier Corthout
Nishimuramethod [2] • 2nd order IIR-filter: • α0determines the selectivity of the filter… Increasingα0 Hans De Clercq & Rogier Corthout
Nishimuramethod [2] • 2nd order IIR-filter: • α0determines the selectivity of the filter • α1determines the center frequency of the pass-band: • α1 is iterativelytuned in real-time to maximize the output of the bandpass filter… Hans De Clercq & Rogier Corthout
Nishimuramethod [3] • Iterative updating schemeforα1: • Gradientalgorithmtowards maximum output power • μdetermines the convergence speed, and is heavilyrelatedwithstability… μ Δ + x HB(z) G(z) u(k) y(k) Hans De Clercq & Rogier Corthout
Nishimuramethod: results Hans De Clercq & Rogier Corthout
Nishimuramethod: results • Update filter foreverynew input value • Computational efficiency real-timeimplementationpossible μ Δ + x HB(z) G(z) u(k) y(k) Hans De Clercq & Rogier Corthout
Nishimuramethod: results Hans De Clercq & Rogier Corthout
Nishimuramethod: results • Limitedconvergence speed ifvaryingfrequency… • E.g. onsine wave signalwithvaryingfrequency and amplitude… Detected dominant frequency (Hz) Amplitude input signal Time (s) Time (s) Hans De Clercq & Rogier Corthout
Nishimuramethod: results Hans De Clercq & Rogier Corthout
Nishimuramethod: conclusion • Works “fine” onartificialsine wave signal… • Biomedicalsignalsaren’tdeterministic at all limitedconvergence speed = bottleneck in detecting the dominant frequency • E.g. onsimple spirometer signal… Detected dominant frequency (Hz) Amplitude input signal Estimation of realfrequency Time (s) Time (s) Unstableworking regime… Hans De Clercq & Rogier Corthout
STFT-method • After paper Hung & Bonnet… • Dividesignal in 51.2s (1024 samples) segmentswith 1/6th overlap betweenwindowsforedgecontinuity • Assumption: continuity over time window • Calculatespectrum and detectmaximum freq. of accelerometersignalf0 ∈ 0.1-1Hz • Filter the signal in pass-band:using a 4th order Butterworth filter… Hans De Clercq & Rogier Corthout
STFT-method [2] Hans De Clercq & Rogier Corthout
STFT-method [3] • E.g. on spirometersignal (trivialonsine wave) frequency time lesssmearing out of low breathingfrequencies Hans De Clercq & Rogier Corthout
STFT-method [4] • E.g. appliedon spirometer signal… • Limitedfrequencyresolution • Butstill more reliablethanNishimurafor long term monitoring… Filteredsignal Detectedfrequency Detected dominant frequency (Hz) Amplitude signal Time (s) Time (s) Hans De Clercq & Rogier Corthout
Comparisonusingaccelerometers • Similarresults: • STFT more reliable and intuitive • Nishimura hard real-timepotential… • STFT seems to be the wisestchoiceforlong-termapplications! Original signal Amplitude signal Filtered (STFT method) Detected dominant frequency (Hz) Amplitude signal Time (s) Time (s) Filtered (Nishimura) Detected dominant frequency (Hz) Amplitude signal Time (s) Time (s) Hans De Clercq & Rogier Corthout
Comparison of performance onspiro & accelero Accelerometersignal Spirometer signal FilteredsignalusingSTFT DetectedfrequencyusingSTFT Consistent detectiononbothsignals FilteredsignalusingNishimura DetectedfrequencyusingNishimura Inconsistent detectiondue to unstablebehaviour… Hans De Clercq & Rogier Corthout
Information processing • Dominant frequency (supra) • RMS-value of BP-filteredsignals • Phase shift with gold standard • Normallyconsistentlysmallduringquietbreathing [GOLLEE] • Exception: transient/fastmovement, e.g. forcedexpiration (coughing) • Implemented, butnotyetusedforthisapplication… Hans De Clercq & Rogier Corthout
Decisionmaking • Determination of breathingpatternfromprocessedinformation • Clustering of sampledvaluesfor all parameters usingfuzzytechniques Advantage: clustering techniquescanrevealstructures in data without relyingonassumptionscommon to conventionalstatisticalmethods, such as the underlyingstatistical distribution Hans De Clercq & Rogier Corthout
Decisionmaking [2] • Data set to beclustered: • Every time sample has itsmembershipfunctionμik: Cluster variables 1…n Time samples k=1…N Hans De Clercq & Rogier Corthout
Decisionmaking [3] • Objective is to minimize the fuzzyc-meansfunctional: • Implementation of Gustaf-Kesselsonalgorithm in Matlab • Complex iterativealgebraicproblem, furthermathematical details omitted… • Only input parameter: expectednumber of clusters c Membershipfunction of sample k to cluster i Distance of sample k to center of cluster i Hans De Clercq & Rogier Corthout
Decisionmaking [4] • Output of algorithm: • Partition matrix with allmembershipfunctionsU • Cluster prototype matrix V with cluster centers • Cluster covariance matrix F Cluster number 1…c Time samples k=1…N Cluster number 1…c Cluster variables k=1…n Cluster number 1…c Cluster variables k=1…n Hans De Clercq & Rogier Corthout
Results and discussion • Detectionmean amplitude or average power per breathingpattern • Applicationonartificial test signalsobtain low errorratesduring clustering: • ε < 15% usingNishimura • ε < 5% using STFT-BPF! Hans De Clercq & Rogier Corthout
Results and discussion [2] Long-termmeasurementusingonlyaccelerometers… Cluster number boxplot dom. freq. point cloud Heavy breathing Quietbreathing RMS STFT-BPF output boxplot RMS No breathing Cluster number Dominant frequency (STFT) Hans De Clercq & Rogier Corthout
Futurework & potential… • Gustaf-Kesselson starts with random cluster centers usestatisticalinformation to initialize clustering more reliably • Expandfrequencydetection & fuzzy clustering to othersignals (ECG, oximetry,…) in order to: • Obtain redundant measurements increasereliability • Examine the correlationbetweenthosesignalsduringapnoea Hans De Clercq & Rogier Corthout
Respiratorymonitoring DSP II – Intermediatepresentation Hans De Clercq & Rogier Corthout