410 likes | 520 Views
The MIT Leg Lab: From Robots to Rehab. Otto Bock C-Leg. Flex-Foot. State Of The Art. State of the Art: Prosthetist defines knee damping. Otto Bock C-Leg. Virtual Prosthetist. Virtual Biomechanist. The MIT Knee: A Step Towards Autonomy. How The MIT Knee Works: Mechanism. Knee Position
E N D
Otto Bock C-Leg Flex-Foot State Of The Art
State of the Art: Prosthetist defines knee damping Otto Bock C-Leg
Virtual Prosthetist Virtual Biomechanist The MIT Knee: A Step Towards Autonomy
How The MIT Knee Works: Mechanism
Knee Position Axial Force Bending Moment Measured Local to Knee Axis (no ankle or foot sensors) How The MIT Knee Works:Sensors Amputee can use vertical shock system
How the MIT Knee Works: Stance Control Goal: Early Stance Flexion & Extension
Stance Control: Three States • Stance Flexion & Stance Extension • A variable hydraulic damper • Damping scales with axial load • Late Stance • Minimize damping Toe-Loading to trigger late-stance zero damping is automatically adjusted by system
How the MIT Knee Works: Swing Control Goal: Control Peak Flexion Angle & Terminal Impact
Swing Phase: Extension Foot Contact Time Extension damping adaptation • Stage one: • Map tc versus impact force • Apply appropriate damping • Stage two: • Control final angle while minimizing impact force
1 0 -1 Human Knees Brake and Thrust Power (W/Kg) Percent Gait Cycle
Human Ankles are Smart Springs Leg stiffness control in walking and running humans Variable stiffness foot-ankle systems
Future of O&P Leg Systems: Intelligent Application of Power • Greater Distance & Less Fatigue • Natural Gait - Dynamic Cosmesis • Enhanced Stability • Increased Mobility
Human Rehab: A Road Map to the Future Better Power Systems and Actuators
Controlling Force, not Position Weight: 2.5 lbs. Stroke: 3 in. Max. Force: 300 lbs. Force Bandwidth: 30 Hz
Biomechatronics Group Hybrid Robots • Nearly autonomous • Controllable • Swam 0.5 body length per second
Human Rehab: A Road Map to the Future Improved Walking Models
Low Stiffness Control: Virtual Model Control Language • Passive walkers work using physical components • Q: Can active walker algorithms be expressed using physical metaphors? • A: Yes, and they perform surprisingly well
Technology Science What are the biological models for human walking? Virtual Model Control Active O&P Leg Systems
Human Rehab: A Road Map to the Future Distributed Sensing and Intelligence
Virtual Prosthetist Virtual Biomechanist User Intent
Collaborators • Leg Laboratory • Gill Pratt • Biomechatronics Group • Robert Dennis (UM) • Nadia Rosenthal (MGH) • Richard Marsh (NE) • Spaulding Gait Laboratory • Casey Kerrigan • Pat Riley
Sponsors • Össur • DARPA • Schaeffer Foundation
Summary Advances in the science of legged locomotion, bioactuation, and sensing are necessary to step towards the next generation of O&P leg systems