1 / 8

Using the Frames Subsystem

Using the Frames Subsystem. July 2013. What is the Power of Frames?. The “power” of the Frames capability stems from the SPICE system’s ability to construct complex reference frame transformations with no programming effort required of you - the end user

sef
Download Presentation

Using the Frames Subsystem

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Using the Frames Subsystem July 2013

  2. What is the Power of Frames? • The “power” of the Frames capability stems from the SPICE system’s ability to construct complex reference frame transformations with no programming effort required of you - the end user • But it’s crucial that you select and load the needed kernels • The principal benefit from the Frames capability is obtained through the main SPK subsystem interfaces (SPKEZR and SPKPOS) and the Frames subsystem interfaces (SXFORM and PXFORM) • The remaining pages illustrate typical use of frames • Several VERY IMPORTANT usage issues are mentioned in the core Frames tutorial; be sure to also read that. In SPICE terminology: “reference frame” = “coordinate system” Using Frames

  3. Offset Between Instruments • Required Kernels: • Generic LSK • Mission FK • Camera IK(s) M i s a l i g n m e n t a n g l e b e t w e e n I S S Compute the angular separation between the ISS Narrow Angle Camera and Wide Angle Camera boresights: C Retrieve the matrix that transforms vectors from NAC to WAC frame CALL PXFORM( ‘CASSINI_ISS_NAC’, ‘CASSINI_ISS_WAC’, ET, MAT ) C Transform NAC boresight to WAC frame and find separation angle CALL MXV ( MAT, NAC_BORESIGHT_nac, NAC_BORESIGHT_wac ) ANGLE = VSEP( NAC_BORESIGHT_wac , WAC_BORESIGHT_wac ) I S S N A C c a m e r a b o r e s i g h t s F r a m e C A S S I N I N A C B o r e s i g h t I S S W A C F r a m e W A C B o r e s i g h t S / C F r a m e ISS = Imaging Science System Using Frames

  4. Angular Constraints • Required Kernels: • Generic LSK • Mission FK • Spacecraft SCLK • Camera IK • Planetary Ephemeris SPK • Spacecraft SPK • Spacecraft CK J 2 0 0 0 S u n F r a m e S u n d i r e c t i o n Check whether the angle between the camera boresight and the direction to the Sun is within the allowed range: CALL SPKPOS( ‘SUN’, ET, ‘CASSINI_ISS_NAC’, ‘LT+S’, ‘CASSINI’, SUNVEC, LT ) ANGLE = VSEP( NAC_BORESIGHT_nac, SUNVEC ) IF ( ANGLE .LE. CONSTRAINT ) WRITE(*,*) ‘WE ARE IN TROUBLE!’ C A S S I N I i n t h e N A C f r a m e S S B I S S N A C F r a m e A n g l e b e t w e e n N A C B o r e s i g h t S / C a n d S u n d i r e c t i o n F r a m e S a t u r n J 2 0 0 0 F r a m e N A C B o r e s i g h t Using Frames

  5. Angles at the Surface J 2 0 0 0 • Required Kernels: • Generic LSK • Generic PCK • Mission FK • Planetary Ephemeris SPK • Satellite Ephemeris SPK • Landing Site SPK S S B F r a m e Compute solar azimuth and elevation at the Huygens probe landing site CALL SPKPOS(‘SUN’,ET,‘HUYGENS_LOCAL_LEVEL’,‘LT+S’,‘HUYGENS_PROBE’,SUNVEC,LT) CALL RECLAT(SUNVEC, R, AZIMUTH, ELEVATION) ELEVATION = -ELEVATION IF (AZIMUTH .LT. 0.D0) THEN AZIMUTH = AZIMUTH + TWOPI() ENDIF S u n S o l a r J 2 0 0 0 S u n D i r e c t i o n E L F r a m e I n L o c a l L e v e l S o l a r F r a m e A Z T i t a n L o c a l L e v e l T i t a n ‘ s I A U F r a m e a t t h e B o d y - f i x e d p r o b e L a n d i n g f r a m e S i t e Using Frames

  6. Relative Position of Sensors • Required Kernels: • Generic LSK • Mission FK • Structure Locations SPK • Spacecraft SCLK • Solar Array CK M A G + Y f r a m e Find the position of one MGS MAG sensor with respect to the other in the MGS s/c frame. Also find the relative orientation of the sensors: CALL SPKEZR(‘MGS_MAG-Y’, ET, ‘MGS_SPACECRAFT’, ‘NONE’, ‘MGS_MAG+Y’, STATE, LT) CALL PXFORM(‘MGS_MAG_+Y_SENSOR’, ‘MGS_MAG_-Y_SENSOR’, ET, MAT) M A G - Y p o s i t i o n r e l a t i v e M A G + Y + Y G i m b a l f r a m e M A G - Y f r a m e S / C F r a m e - Y G i m b a l H i n g e - Y f r a m e f r a m e Using Frames

  7. Manipulators - 1 M G S • Required Kernels: • Generic LSK • Mission FK • Spacecraft SCLK • HGA IK • Structure Locations SPK • Planetary Ephemeris SPK • Spacecraft SPK • Spacecraft CK • HGA CK Compute the angle between the direction to Earth and the MGS HGA boresight: CALL SPKEZR( ‘EARTH’, ET, ‘MGS_HGA’, ‘LT+S’, ‘MGS’, EARTH_STATE, LT ) ANGLE = VSEP( HGA_BORESIGHT, EARTH_STATE ) S / C F r a m e H G A H i n g e H G A f r a m e f r a m e H G A G i m b a l M a r s f r a m e M G S H G A J 2 0 0 0 o f f - p o i n t i n g F r a m e a n g l e S u n S S B E a r t h HGA = High Gain Antenna J 2 0 0 0 F r a m e Using Frames

  8. Manipulators - 2 R A J 2 D i g L o c . • Required Kernels: • Generic LSK • Mission FK • Lander SCLK • Structure Locations SPK • Lander SPK • Lander CK • SSI CK • RA CK S S I F r a m e F r a m e i n S S I f r a m e S S I C a m e r a Compute the soil digging location in the MPL surface-fixed and camera left eye frames: CALL SPKEZR( ‘MPL_RA_SCOOP’,ET,‘MPL_SURFACE_FIXED’,‘NONE’,‘MPL_SURF’,ST1,LT ) CALL SPKEZR( ‘MPL_RA_SCOOP’,ET,‘MPL_SSI_LEFT’, ‘NONE’,‘MPL_SSI’, ST2,LT ) h e a d F r a m e R A S c o o p F r a m e R A J 1 F r a m e D i g L o c a t i o n M V A C S i n S u r f a c e f i x e d F r a m e f r a m e S u r f a c e - f i x e d F r a m e Using Frames

More Related