1 / 24

C H A P T E R

5. C H A P T E R. Bioenergetics of Exercise and Training. Chapter Outline.  Essential terminology.  Biological energy systems.  Substrate depletion and repletion.  Bioenergetic limiting factors in exercise performance.  Metabolic specificity of training.  Energy.  Metabolism.

selah
Download Presentation

C H A P T E R

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 5 C H A P T E R Bioenergetics of Exercise and Training

  2. Chapter Outline Essential terminology Biological energy systems Substrate depletion and repletion Bioenergetic limiting factors in exercise performance  Metabolic specificity of training

  3. Energy Metabolism Bioenergetics Adenosine triphosphate (ATP) Catabolism Adenosine diphosphate (ADP) Anabolism Exergonic reactions Adenosine monophosphate (AMP) Endergonic reactions Essential Terminology

  4. Chemical Structures of ATP, ADP, and AMP

  5. Energy stored in the chemical bonds of adenosine triphosphate (ATP) is used to power muscular activity. The replenishment of ATP in human skeletal muscle is accomplished by three basic energy systems: phosphagen, glycolytic, and oxidative.

  6. Phosphagen (Anaerobic) System Occurs in the absence of molecular oxygen Provides ATP for short-term, high-intensity activities Is active in the start of all exercise regardless of intensity

  7. Myosin ATPase and Creatine Kinase Reactions

  8. Myokinase Reaction

  9. Glycolytic System Breaks down carbohydrates to produce ATP that supplements the supply from the phosphagen system for high-intensity muscular activity May go in one of two ways: fast glycolysis and slow glycolysis

  10. During fast glycolysis, pyruvate is converted to lactic acid, providing ATP at a fast rate compared with slow glycolysis, in which pyruvate is transported to the mitochondria for use in the oxidative system.

  11. Fast glycolysis has commonly been called anaerobic glycolysis, and slow glycolysis, aerobic glycolysis, as a result of the ultimate fate of the pyruvate. However, because glycolysis itself does not depend on oxygen, these terms are not practical for describing the process.

  12. Glycolysis

  13. The Cori Cycle

  14. Lactate Threshold (LT) and Onset of Blood Lactate Accumulation (OBLA)

  15. Oxidative (Aerobic) System Requires molecular oxygen Provides ATP at rest and during low-intensity activities Uses primarily carbohydrates and fats as substrates

  16. The oxidative metabolism of blood glucose and muscle glycogen begins with glycolysis. If oxygen is present in sufficient quantities the end product of glycolysis, pyruvate, is not converted to lactic acid but is transported to the mitochondria, where it is taken up and enters the Krebs Cycle, or citric acid cycle.

  17. Krebs Cycle

  18. Electron Transport Chain

  19. Total ATP’s produced Slow Glycolysis and Krebs Cycle See Table 5.1 p. 81

  20. Metabolism of Fat, Carbohydrate, and Protein

  21. In general, an inverse relationship exists between the relative rate and total amount of ATP that a given energy system can produce. As a result, the phosphagen energy system primarily supplies ATP for high-intensity activities of short duration, the glycolytic system for moderate- to high-intensity activities of short to medium duration, and the oxidative system for low-intensity activities of long duration.

  22. Duration Intensity Primary energyof event of event system(s) 0-6 s Very intense Phosphagen 6-30 s Intense Phosphagen and fast glycolysis 30 s-2 min Heavy Fast glycolysis 2-3 min Moderate Fast glycolysis and oxidative system > 3 min Light Oxidative system Table 5.3 Effect of Event Duration on Primary Energy System Used

  23. System Rate of ATP Capacity of ATP production production Phosphagen 1 5 Fast glycolysis 2 4 Slow glycolysis 3 3 Oxidation ofcarbohydrates 4 2 Oxidation of fats and proteins 5 1 1 = fastest/greatest; 5 = slowest/least Table 5.4 Rankings of Rate and Capacity of ATP Production

  24. The use of appropriate exercise intensities and rest intervals allows for the “selection” of specific energy systems during training and results in more efficient and productive regimens for specific athletic events with various metabolic demands. See Chart on page 88- Interval Training Guides

More Related