1 / 13

Clase 120

Clase 120. Ejercicios sobre propiedades de los logaritmos. Revisión del estudio individual. Sabiendo que log 10 3 = 0,477 Calcula: log 10 30; log 10 3000; log 10 0,003. log 10 30 = log 10 (3·10). = log 10 3 + log 10 10. = 0,477 + 1. = 1,477. log 10 3000 ; log 10 0,003.

selima
Download Presentation

Clase 120

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Clase 120 Ejercicios sobre propiedades de los logaritmos

  2. Revisión del estudio individual Sabiendo que log103 = 0,477 Calcula: log1030; log103000; log100,003 log1030 = log10 (3·10) = log10 3 + log10 10 = 0,477 + 1 = 1,477

  3. log103000 ; log100,003 log103000 = log10 (3 · 1000) = log10 3 + log10 1000 = log10 3 + log10 103 = 0,477 + 3 = 3,477 log10 (3 :1000) log 10 0,003 = = log10 3 –log10 103 = 0,477 – 3 = – 2,523

  4. b b) loga= loga b – logac c 1 e) log b = logab x ax Propiedades de los logaritmos Si a>0, b>0, c>0 tal que a1 entonces, se cumple: a) loga(b·c) = logab + logac c) loga bx = x logab (c  1) d) loga c · logc b = loga b (x  0)

  5. loga b logc b = loga c log2128 7 = 3 log2 8 d) loga c · logc b = loga b ( cambio de base) Ejemplo: log8 128 =

  6. 7 c) log2 0,064 Ejercicio 1 Sabiendo que log2 10 = 3,32 Calcula: a) log2 1,6 b) log2 0,008 Estudio Individual

  7. 16 a) log2 1,6 = log2 10 log2 10 = 3,32 = log2 16 – log210 = 4 – 3,32 = 0,68 b) log2 0,008 = log2 (8·10 -3 ) = log28 + log2 10 -3 = 3 + (– 3· 3,32) = –6,96 = 3 + (– 9,96)

  8. b) log5 N 4 25  N Ejercicio 2 : Si log5 N = k, expresa en función de k los siguientes logaritmos: a) log5125N c) log5 d) logN 5

  9. 1 1 = log5 N k b) log5 N 4 25 1 1  N 4 4 k = 4 log5 5 d) logN 5 log5 N = k = = log5 N = log5 125 + log5N a) log5125N = 3 + k = log5 N – log525 = k – 2 c) log5 = log5 N = log5 N

  10. 1 3 1 1 log3 b a) log3x = log3 b– log3 c + 4 2 4 2 3 log2 a log2 x = log2 b)  a2 – Ejercicio 3 Resuelve considerando todas las expresiones positivas:

  11. log3 x =log 3 b– log 3 3 1 1 log3 b a) log3x = log3 b– log3 c + 4 2 4 b  c  c  c  c  c  c b  c b x = = c c log3 x =log 3 b– log 3 c 0,5 b log 3 x = log3 .

  12. log2 a log2 x = log2 – b) 1  a  a 2 6 6 6 3 3 6 6 3  a3  a2  a2  a4  a  a  a  a2 log2 x =log2 log2 x =log2 = x = =

  13. 1 7 Para el estudio individual Resuelve las ecuaciones: log7 (2x2 – 5x) =1 a) x1 = 3,5 x2 = –1 b) log2(x – 1) 7 : 7 = x = 2

More Related