1 / 28

Genetic Algorithms

Genetic Algorithms. Genetic algorithms imitate natural optimization process, natural selection in evolution. D eveloped by John Holland at the University of Michigan for machine learning in 1975. Similar algorithms developed in Europe in the 1970s under the name evolutionary strategies

sen
Download Presentation

Genetic Algorithms

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Genetic Algorithms • Genetic algorithms imitate natural optimization process, natural selection in evolution. • Developed by John Holland at the University of Michigan for machine learning in 1975. • Similar algorithms developed in Europe in the 1970s under the name evolutionary strategies • Main difference has been in the nature of the variables: Discrete vs. continuous • Class is called evolutionary algorithms • Will cover also differential evolution.

  2. Basic Scheme • Coding: replace design variables with a continuous string of digits or “genes” • Binary • Integer • Real • Population: Create population of design points • Selection: Select parents based on fitness • Crossover: Create child designs • Mutation: Mutate child designs

  3. Genetic operators • Crossover: portions of strings of the two parents are exchanged • Mutation: the value of one bit (gene) is changed at random • Permutation: the order of a portion of the chromosome is reversed • Addition/deletion: one gene is added to/removed from the chromosome

  4. 40 100 30 70 Create initialpopulation Calculatefitness Select parents Algorithm of standard GA Create children

  5. Coding • Integer variables are easily coded as they are or converted to binary digits • Real variables require more care • Key question is resolution or interval • The number m of required digits found from

  6. Stacking sequence optimization • For many practical problems angles limited to 0-deg, 45-deg, 90-deg. • Ply thickness given by manufacturer • Stacking sequence optimization a combinatorial problem • Genetic algorithms effective and easy to implement, but do not deal well with constraints

  7. Coding - stacking sequence • Natural coding: (00=>1, 450=>2, - 450=>3, 900=>4) (45/-45/90/0)s => (2/3/4/1) • To satisfy balance condition, convenient to work with two-ply stacks (02=>1, 45=>2, 902=>3) or (45/-45/902/02)s => (2/3/1) • To allow variable thickness add empty stacks (2/3/1/E/E)=> (45/-45/902/02)s

  8. Initial population • Random number generator used • Typical function call is rand(seed) • Seed updated after call to avoid repeating the same number. See Matlab help on how to change seed (state). • Need to transform random numbers to values of alleles.

  9. Fitness • Augmented objective f*=f + pv-bm+sign(v) . • v = max violation • m = min margin • Repair may be more efficient than penalty • Fitness is normalized objective or ns+1-rank • What is the advantage of rank based objective?

  10. Roulette wheel selection • Example fitnesses

  11. Single Point Crossover • Parent designs [04/±452/902]s and [±454/02]s • Parent 1 [1/1/2/2/3] • Parent 2 [2/2/2/2/1] • One child [1/1/2/2/1] • That is: [04/±452/02]s

  12. Other kinds of crossover • Multiple point crossover • Hitchhiking problem • Uniform crossover • Random crossover for real numbers • Multi-parent crossover

  13. Mutation and stack swap • [1/1/2/2/3]=> [1/1/2/3/3] • [04/±452/902]s =>[04/±45/904]s • [1/1/2/2/3]=> [1/2/1/2/3] • [04/±452/902]s =>[(02/±45)2/902]s

  14. Differential evolution (Wikipedia) • Initialize m designs with n real number • Repeat the following: • Crossover: For each design x • find three other random unique designs a,b,c to combine with y=y(x,a,b,c). • For each design variable make a decision based on random number whether to leave alone or combine. • Replacement: If y is better than x replace the x with y.

  15. Combination details

  16. Questions • Global optimization balances exploration and exploitation. How is that reflected in genetic algorithms? • What are all possible child designs of [02/±45/90]s and [±452/0]s that are balanced and symmetric? • When we breed plants and animals we do not introduce randomness on purpose into the selection procedure. Why do we do that with GAs?

  17. Reliability • Genetic algorithm is random search with random outcome. • Reliability r can be estimated from multiple runs for similar problems with known solution • Variance of reliability, r, from n runs

  18. Reliability curves

  19. Multi-material laminate • “Materials”: one material = 1 lamina ( matrix or fiber materials)E.g.: glass-epoxy, graphite-epoxy, Kevlar-epoxy… • Use two materials in order to combine high efficiency (stiffness) and low cost • Graphite-epoxy: very stiff but expensive; glass-epoxy: less stiff, less expensive • Objective: use graphite-epoxy only where most efficient, use glass-epoxy for the remaining plies

  20. Multi-criterion optimization • Two competing objective functions: WEIGHT and COST • Design variables: • number of plies • ply orientations • ply materials • No single design minimizes weight and cost simultaneously: A design is Pareto-optimal if there is no design for which both Weight and Cost are lower • Goal: construct the trade-offcurve between weight and cost (set of Pareto-optimal designs)

  21. Graphite-epoxy Longitudinal modulus, E1: 20.01 106 psi Transverse modulus, E2: 1.30 106 psi Shear modulus, G12: 1.03 106 psi Poisson’s ratio, 12: 0.3 Ply thickness, t: 0.005 in Density, : 5.8 10-2 lb/in3 Ultimate shear strain, ult: 1.5 10-2 Cost index: $8/lb Glass-epoxy Longitudinal modulus, E1: 6.30 106 psi Transverse modulus, E2: 1.29 106 psi Shear modulus, G12: 6.60 105 psi Poisson’s ratio, 12: 0.27 Ply thickness, t: 0.005 in Density, : 7.2 10-2 lb/in3 Ultimate shear strain, ult: 2.5 10-2 Cost index: $1/lb Material properties

  22. Material properties Source: http://composite.about.com for the stiffnesses, Poisson's ratios and densities

  23. Method for constructing the Pareto trade-off curve • Simple method: weighting method. A composite function is constructed by combining the 2 objectives:W: weight C: cost: weighting parameter (01) • A succession of optimizations with  varying from 0 to 1 is solved. The set of optimum designs builds up the Pareto trade-off curve

  24. Multi-material Genetic Algorithm • Two variables for each ply: • Fiber orientation • Material • Each laminate is represented by 2 strings: • Orientation string • Material string • Example:[45/0/30/0/90] is represented by: • Orientation: 45-0-30-0-90 • Material: 2-2-1-2-1 • GA maximizes fitness: Fitness = -F 1: graphite-epoxy2: glass-epoxy

  25. Simple vibrating plate problem • Minimize the weight (W) and cost (C) of a 36”x30” rectangular laminated plate • 19 possible ply angles from 0 to 90 in 5-degree step • Constraints: • Balanced laminate (for each + ply, there must be a - ply in the laminate) • first natural frequency > 25 Hz Frequency calculated using Classical Lamination Theory

  26. How constraints are enforced • GAs do not permit constrained optimization • Balance constraint hard coded in the strings: stacks of ± are usedExample: (45-0-30-25-90) represents [±45/0/±30/±25/90]s • Other constraints (frequency, maximum strain…) are incorporated into the objective function by a penalty, which is proportional to the constraint violation >0: penalty parameter, g: constraint

  27. Pareto Trade-off curve A (16.3,16.3) point C • 64% lighter than A; 17% more expensive • 53% cheaper than B; 25% heavier (lb) C B (5.9,55.1) ($)

  28. Optimum laminates Intermediate optimum laminates:sandwich-type laminates • Cost minimization: [±5010/0]s, cost = 16.33, weight = 16.33 • Weight minimization: [±505/0]s, cost = 55.12, weight = 6.89 • Intermediate design: [±502/±505]s,cost = 27.82, weight = 10.28 Graphite-epoxy as outer pliesfor a high frequency Midplane Glass-epoxy in the core layersto increase the thickness

More Related