1 / 13

Clase 126

Clase 126. Ejercicios sobre inecuaciones logarítmicas. x 2 + x. log 5 < log 5 x. x + 2. x 2 + x. < x. x 2 + x. x + 2. – x < 0. x + 2. Estudio individual de la clase anterior. b) log 5 (x 2 +x) – log 5 (x + 2) < log 5 x. x 2 + x – x(x + 2). < 0. x + 2.

Download Presentation

Clase 126

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Clase 126 Ejercicios sobre inecuaciones logarítmicas

  2. x2+ x log5 < log5x x + 2 x2+ x < x x2+ x x + 2 – x < 0 x + 2 Estudio individual de la clase anterior b) log5(x2+x) – log5(x + 2) < log5x

  3. x2+ x – x(x + 2) < 0 x + 2 x2+ x – x2 – 2x < 0 x + 2 – x < 0 x + 2 x > 0 x + 2 0 –2 –1 x2+ x > 0 x(x+1) > 0 ceros x1 = 0 ; x3 = –1 C.N. x1 = 0 x + 2 > 0 x > –2 C.D. x2 = –2 x > 0 + +

  4. c) log (7x2 – 3)  2 (x2+1) Ejercicio Resuelve las siguientes inecuaciones a) log2(x – 5) + log2(x – 4) < 1 b) log4(2x + 1) – log4x > log43 d) log2(x+5)+log2(x+3) < log2(x+9) e) log2(x – 7) – log2(x2 – 4)  1

  5. 6 3 5 4 a) log2(x – 5) + log2(x – 4) < 1 log2 [(x – 5)(x – 4)]< 1 ceros: x1= 3 ; x2= 6 log2 (x2 – 9x + 20)< 1 x2 – 9x + 20 < 2 x2 – 9x + 18 < 0 x > 5 (x – 3)(x – 6) < 0 x > 4 5 < x < 6 + +

  6. 2x + 1 · (– 1) > 3 x 2x + 1 x x – 1 < 0 x b) log4(2x + 1) – log4x > log43 2x + 1 log4 > log43 x – 3 > 0 2x + 1 – 3x > 0 x –x + 1 > 0 x

  7. 1 x – 1 x > – < 0 2 x 1 0 1 – 2 x > 0 C.N. x1= 1 C.D. x2= 0 + + 0 < x < 1

  8. c) log (7x2 – 3)  2 (x2+1) x2+1 > 0 x * 7x2 – 3  (x2+1)2 7x2 – 3  x4+2x2 +1 0  x4–5x2 + 4 x4–5x2 + 4 0 (x2 – 4)(x2 – 1) 0 (x + 2)(x – 2)(x + 1)(x – 1) 0 ceros: x1;2=  2 ; x3;4= 1

  9. 3 x2 > 7  3 x >   7 ceros: x1;2=  2 ; x3;4= 1 7x2 – 3 > 0 7x2 > 3 x >  0,65 x < – 0,65 ó x > 0,65

  10. 2 1 0 –1 –2 ceros: x1;2=  2 ; x3;4= 1 x < – 0,65 ó x > 0,65 x  –2 ó –1 x < – 0,65 ó 0,65 < x  1 ó x  2 + + + 0,65 – 0,65

  11. Para el estudio individual Incisos d y e del ejercicio de la clase Respuestas: d) – 3 < x < – 1 e) x > 7

  12. d) log2(x+5)+log2(x+3) < log2(x+9) log2 [(x + 5)(x + 3)]< log2(x+9) [(x + 5)(x + 3)]< x + 9 x2 + 8x + 15 < x + 9 x2 + 7x + 6 < 0 (x + 6)(x + 1) < 0 Ceros: x1 = –6 ; x2 = –1

  13. –1 –6 –3 –9 –5 Ceros: x1 = –6 ; x2 = –1 x > –3 x > –5 x > –9 – 3 < x < – 1 + +

More Related