1 / 28

K nowledge E ngineering

K nowledge E ngineering. Develop a Personalized Service Platform With Automatic Customer Catagorization Capability To Enhance Customer Satisfaction And Loyal Customer Retention. 9534533 陳孟鈺 、 9634521吳昌儒 National Tsing Hua University (NTHU), Industrial Engineering

Download Presentation

K nowledge E ngineering

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Knowledge Engineering Develop a Personalized Service Platform With Automatic Customer Catagorization Capability To Enhance Customer Satisfaction And Loyal Customer Retention 9534533 陳孟鈺、 9634521吳昌儒 National Tsing Hua University (NTHU), Industrial Engineering & Engineering Management (IEEM), Taiwan

  2. Outline • Introduction • Background • Current Services Model • Research Objectives • System Framework and Customer Categorization Method • Case Example and Experiment of Customer Analysis • Conclusion 2

  3. Background (1/1) • 餐飲服務業競爭激烈 • 餐飲資訊取得迅速 • 業界競爭激烈顧客選擇多 • 客戶忠誠度低 • 業者不易掌握顧客消費習性 • 服務無法滿足顧客需求 3

  4. Current Services Model(1/1) 客戶 1. 我要點啥菜 2. 今天情人節ㄝ 3. 這個服務生好笨 服務生 1. 要幫忙推薦嗎? 2. 今天哪道菜不錯? 3. 找最貴那道好了 點菜服務 買單送客 訂位服務 迎賓帶位 點菜服務 餐前服務 飲料服務 餐中服務 上菜服務 餐後服務 4

  5. Outline • Introduction • Research Objectives • Research Objectives • System Framework and Customer Categorization Method • Case Example and Experiment of Customer Analysis • Conclusion 5

  6. ResearchObjectives (1/1) • 建構智慧型顧客服務平台 • 顧客過去消費記錄以及其個人資料之收集 • 提供服務人員辨識顧客並提供顧客服務 • 提供顧客高效率之客製化服務 • 提高顧客服務滿意度 • 依顧客之過去歷史消費記錄,使用類神經分類模組進行顧客之喜好進行顧客分類,然後給予套餐之推薦,以提高顧客之服務滿意度 6

  7. Outline • Introduction • Research Objectives • System Framework and Customer Categorization Method • Functional modules of the platform • Automatic customer categorization • Case Example and Experiment of Customer Analysis • Conclusion 7

  8. Functional modules of the platform(1/4) System framework 8

  9. Functional modules of the platform(2/4) Customer Registration Module 9

  10. Functional modules of the platform(3/4) Customer Recognition Module 10

  11. Functional modules of the platform(4/4) Customer Service and Ordering Module 11

  12. 菜餚推薦清單 1. 影系列套餐 2. 一般套餐 3. 特選套餐 4. 素食套餐 Automatic customer categorization(1/3) Input layer Method 1 Hidden layer 性別 個性 職業 月收入 消費金額 消費頻率 各餐點消費頻率 Output layer X 12

  13. Automatic customer categorization(2/3) Method 2 顧客重要性 累積消費頻率 累積消費金額 顧客重要性指標 13

  14. 菜餚推薦清單 1. 影系列套餐 2. 一般套餐 3. 特選套餐 4. 素食套餐 Automatic customer categorization(3/3) Input layer Hidden layer 性別 個性 職業 月收入 顧客重要性指標 各餐點消費頻率 Output layer X 14

  15. Outline • Introduction • Research Objectives • System Framework and Customer Categorization Method • Case Example and Experiment of Customer Analysis • Case discussion • Construct and train the BPN model • Conclusion 15

  16. Case discussion(1/1) • 來源:台北某高級日本料理餐廳 • 資料: • 顧客基本資料 • 性別 • 職業 • 個性 • 月收入 • 顧客消費記錄 • 累積消費金額 • 個人累積點餐次數 • 個人各餐點點餐次數 16

  17. Construct and train the BPN model(1/9) 17

  18. Construct and train the BPN model(2/9) 18

  19. Construct and train the BPN model(3/9) Method 1 19

  20. Construct and train the BPN model(4/9) Method 1 20

  21. Construct and train the BPN model(5/9) Method 1 Model 8 21

  22. Construct and train the BPN model(6/9) Method 2 22

  23. Construct and train the BPN model(7/9) Method 2 23

  24. Construct and train the BPN model(8/9) Method 2 Model 6 24

  25. Construct and train the BPN model(9/9) 25

  26. Outline • Introduction • Research Objectives • System Framework and Customer Categorization Method • Case Example and Experiment of Customer Analysis • Conclusion 26

  27. Conclusion • 類神經分類模式結論 • 類神經模組未來發展 27

  28. The End NO Q &A , and thank you for your listening. 28

More Related