1 / 21

4.7 Triangles and Coordinate Proof

4.7 Triangles and Coordinate Proof. Objectives:. Place geometric figures in a coordinate plane. Write a coordinate proof. Placing Figures in a Coordinate Plane.

seth
Download Presentation

4.7 Triangles and Coordinate Proof

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 4.7 Triangles and Coordinate Proof

  2. Objectives: • Place geometric figures in a coordinate plane. • Write a coordinate proof.

  3. Placing Figures in a Coordinate Plane • So far, you have studied two-column proofs, paragraph proofs, and flow proofs. A COORDINATE PROOF involves placing geometric figures in a coordinate plane. Then you can use the Distance Formula (no, you never get away from using this) and the Midpoint Formula, as well as postulate and theorems to prove statements about figures.

  4. Ex. 1: Placing a Rectangle in a Coordinate Plane • Place a 2-unit by 6-unit rectangle in a coordinate plane. • SOLUTION: Choose a placement that makes finding distance easy (along the origin) as seen to the right.

  5. One vertex is at the origin, and three of the vertices have at least one coordinate that is 0. Ex. 1: Placing a Rectangle in a Coordinate Plane

  6. One side is centered at the origin, and the x-coordinates are opposites. Ex. 1: Placing a Rectangle in a Coordinate Plane

  7. Note: • Once a figure has been placed in a coordinate plane, you can use the Distance Formula or the Midpoint Formula to measure distances or locate points

  8. A right triangle has legs of 5 units and 12 units. Place the triangle in a coordinate plane. Label the coordinates of the vertices and find the length of the hypotenuse. Ex. 2: Using the Distance Formula

  9. One possible placement is shown. Notice that one leg is vertical and the other leg is horizontal, which assures that the legs meet as right angles. Points on the same vertical segment have the same x-coordinate, and points on the same horizontal segment have the same y-coordinate. Ex. 2: Using the Distance Formula

  10. You can use the Distance Formula to find the length of the hypotenuse. d = √(x2 – x1)2 + (y2 – y1)2 = √(12-0)2 + (5-0)2 = √169 = 13 Ex. 2: Using the Distance Formula

  11. In the diagram, ∆MLN ≅ ∆KLN). Find the coordinates of point L. Solution: Because the triangles are congruent, it follows that ML ≅ KL. So, point L must be the midpoint of MK. This means you can use the Midpoint Formula to find the coordinates of point L. Ex. 3 Using the Midpoint Formula

  12. L (x, y) = x1 + x2, y1 +y2 2 2 Midpoint Formula =160+0 , 0+160 2 2 Substitute values = (80, 80) Simplify. Ex. 3 Using the Midpoint Formula

  13. Writing Coordinate Proofs • Once a figure is placed in a coordinate plane, you may be able to prove statements about the figure.

  14. Ex. 4: Writing a Plan for a Coordinate Proof • Write a plan to prove that SQ bisects PSR. • Given: Coordinates of vertices of ∆PQS and ∆RQS. • Prove SQ bisects PSR. • Plan for proof: Use the Distance Formula to find the side lengths of ∆PQS and ∆RQS. Then use the SSS Congruence Postulate to show that ∆PQS ≅ ∆RQS. Finally, use the fact that corresponding parts of congruent triangles are congruent (CPCTC) to conclude that PSQ ≅RSQ, which implies that SQ bisects PSR.

  15. Given: Coordinates of vertices of ∆PQS and ∆RQS. Prove SQ bisects PSR. Ex. 4: Writing a Plan for a Coordinate Proof

  16. NOTE: • The coordinate proof in Example 4 applies to a specific triangle. When you want to prove a statement about a more general set of figures, it is helpful to use variables as coordinates. • For instance, you can use variable coordinates to duplicate the proof in Example 4. Once this is done, you can conclude that SQ bisects PSR for any triangle whose coordinates fit the given pattern.

  17. No coordinates – just variables

  18. Right ∆QBC has leg lengths of h units and k units. You can find the coordinates of points B and C by considering how the triangle is placed in a coordinate plane. Point B is h units horizontally from the origin (0, 0), so its coordinates are (h, 0). Point C is h units horizontally from the origin and k units vertically from the origin, so its coordinates are (h, k). You can use the Distance Formula to find the length of the hypotenuse QC. Ex. 5: Using Variables as Coordinates C (h, k) hypotenuse k units Q (0, 0) B (h, 0) h units

  19. OC = √(x2 – x1)2 + (y2 – y1)2 = √(h-0)2 + (k - 0)2 = √h2 + k2 Ex. 5: Using Variables as Coordinates C (h, k) hypotenuse k units Q (0, 0) B (h, 0) h units

  20. Given: Coordinates of figure OTUV Prove ∆OUT  ∆UVO Coordinate proof: Segments OV and UT have the same length. OV = √(h-0)2 + (0 - 0)2=h UT = √(m+h-m)2 + (k - k)2=h Ex. 5 Writing a Coordinate Proof

  21. Horizontal segments UT and OV each have a slope of 0, which implies they are parallel. Segment OU intersects UT and OV to form congruent alternate interior angles TUO and VOU. Because OU  OU, you can apply the SAS Congruence Postulate to conclude that ∆OUT  ∆UVO. Ex. 5 Writing a Coordinate Proof

More Related