420 likes | 433 Views
William Stallings Computer Organization and Architecture 6 th Edition. Chapter 9 Computer Arithmetic. Arithmetic & Logic Unit. Does the calculations Everything else in the computer is there to service this unit Handles integers May handle floating point (real) numbers
E N D
William Stallings Computer Organization and Architecture6th Edition Chapter 9 Computer Arithmetic
Arithmetic & Logic Unit • Does the calculations • Everything else in the computer is there to service this unit • Handles integers • May handle floating point (real) numbers • May be separate FPU (maths co-processor) • May be on chip separate FPU (486DX +) Human: -1101.01012 = -13.312510
Integer Representation • Only have 0 & 1 to represent everything • Positive numbers stored in binary • e.g. 41=00101001=32+8+1 • No minus sign • No period • Sign-Magnitude • Two’s compliment
Sign-Magnitude • Left most bit is sign bit • 0 means positive • 1 means negative • +18 = 00010010 • -18 = 10010010 • Problems • Need to consider both sign and magnitude in arithmetic • Two representations of zero (+0 and -0) +18 = 00010010 -18 = 10010010
Two’s Compliment • +3 = 00000011 • +2 = 00000010 • +1 = 00000001 • +0 = 00000000 • -1 = 11111111 • -2 = 11111110 • -3 = 11111101
Benefits of Two’s Compliment • One representation of zero • Arithmetic works easily (see later) • Negating is fairly easy • 3 = 00000011 • Boolean complement gives 11111100 • Add 1 to LSB 11111101
Range of Numbers • 8 bit 2s compliment • +127 = 01111111 = 27 -1 • -128 = 10000000 = -27 • 16 bit 2s compliment • +32767 = 011111111 11111111 = 215 - 1 • -32768 = 100000000 00000000 = -215 Value range for an n-bit number Positive Number Range: 0 ~ 2n-1-1 Negative number range: -1 ~ - 2n-1
Conversion Between Lengths • Positive number pack with leading zeros • +18 = 00010010 • +18 = 00000000 00010010 • Negative numbers pack with leading ones • -18 = 11101110 • -18 = 11111111 11101110 • i.e. pack with MSB (sign bit)
Addition and Subtraction • Normal binary addition • Monitor sign bit for overflow • Take twos compliment of subtrahend and add to minuend • i.e. a - b = a + (-b) • So we only need addition and complement circuits
Multiplication • Complex • Work out partial product for each digit • Take care with place value (column) • Add partial products • Note: need double length result
Multiplying Negative Numbers • This does not work! • Solution 1 • Convert to positive if required • Multiply as above • If signs were different, negate answer • Solution 2 • Booth’s algorithm
Division • More complex than multiplication • Negative numbers are really bad! • Based on long division
Real Numbers • Numbers with fractions • Could be done in pure binary • 1001.1010 = 24 + 20 +2-1 + 2-3 =9.625 • Where is the binary point? • Fixed? • Very limited • Moving? • How do you show where it is?
Scientific notation: Slide the decimal point to a convenient location Keep track of the decimal point use the exponent of 10 Do the same with binary number in the form of Sign: + or - Significant: S Exponent: E
Floating Point • +/- .significand x 2exponent • Point is actually fixed between sign bit and body of mantissa • Exponent indicates place value (point position) • 32-bit floating point format. • Leftmost bit = sign bit (0 positive or 1 negative). • Exponent in the next 8 bits. Use a biased representation. • A fixed value, called bias, is subtracted from the field to get the true exponent value. Typically, bias = 2k-1 - 1, where k is the number of bits in the exponent field. Also known as excess-N format, where N = bias = 2k-1 - 1. (The bias could take other values) • In this case: 8-bit exponent field, 0 - 255. Bias = 127. Exponent range -127 to +128 • Final portion of word (23 bits in this example) is the significant (sometimes called mantissa).
Signs for Floating Point • Mantissa is stored in 2’s compliment • Exponent is in excess or biased notation • e.g. Excess (bias) 128 means • 8 bit exponent field • Pure value range 0-255 • Subtract 128 to get correct value • Range -128 to +127
Many ways to represent a floating point number, e.g., Normalization: Adjust the exponent such that the leading bit (MSB) of mantissa is always 1. In this example, a normalized nonzero number is in the form Left most bit always 1 - no need to store 23-bit field used to store 24-bit mantissa with a value between 1 to 2
Normalization • FP numbers are usually normalized • i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1 • Since it is always 1 there is no need to store it • (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point) • 0.0001010101X225 • 1.010101X221
FP Ranges • For a 32 bit number • 8 bit exponent • +/- 2256 1.5 x 1077 • Accuracy • The effect of changing LSB of mantissa • 23 bit mantissa 2-23 1.2 x 10-7 • About 6 decimal places
IEEE 754 • Standard for floating point storage • 32 and 64 bit standards • 8 and 11 bit exponent respectively • Extended formats (both mantissa and exponent) for intermediate results
FP Arithmetic +/- • Check for zeros • Align significands (adjusting exponents) • Add or subtract significands • Normalize result
FP Arithmetic x/ • Check for zero • Add/subtract exponents • Multiply/divide significands (watch sign) • Normalize • Round • All intermediate results should be in double length storage