170 likes | 382 Views
Bayes-Netze. Überblick. Syntax Semantik. Bayes-Netze. Bayes-Netze sind eine graphische Notation für Aussagen über bedingte Unabhängigkeit und damit ein praktischer Weg, gemeinsame Wahrscheinlichkeitsverteilungen zu spezifizieren. Syntax: Eine Menge von Knoten , einer pro Zufallsvariable.
E N D
Bayes-Netze KI 14-Bayes-Netze
Überblick • Syntax • Semantik KI 14-Bayes-Netze
Bayes-Netze • Bayes-Netze sind eine graphische Notation für Aussagen über bedingte Unabhängigkeit und damit ein praktischer Weg, gemeinsame Wahrscheinlichkeitsverteilungen zu spezifizieren. • Syntax: • Eine Menge von Knoten, einer pro Zufallsvariable. • Ein gerichteter azyklischer Graph • Kante von A nach B bedeutet: „A beeinflusst B“. • A heißt Elternknoten von B. • Eine bedingte Wahrscheinlichkeitsverteilung für jeden Knoten in Abhängigkeit von seinen Elternknoten: P (Xi | Eltern(Xi)) • Im einfachsten Fall wird die bedingte Wahrscheinlichkeitsverteilung repräsentiert als eine Tabelle (conditional probability table – CPT)bedingter Wahrscheinlichkeiten, d.h. die Wahrscheinlichkeitsverteilung von Xi wird für jede Wertekombination der Elternknoten gegeben. KI 14-Bayes-Netze
Beispiel • Topologie des Netzes kodiert Abhängigkeiten durch bedingte Unabhängigkeit: • Wetter ist unabhängig von den anderen Variablen • Zahnschmerzen und Catch sind bedingt unabhängig bei gegebenem Wert für Loch. KI 14-Bayes-Netze
Beispiel • Ich bin nicht zu Hause. Nachbar John ruft an und sagt, dass meine Alarmanlage Alarm gibt, aber meine Nachbarin Mary ruft nicht an. Manchmal springt die Alarmanlage wegen eines kleinen Erdbebens an. Liegt ein Einbruch vor? • Variable: Einbruch, Erdbeben, Alarm, JohnRuftAn, MaryRuftAn • Netztopologie bildet „kausales Wissen“ ab: • Ein Einbrecher kann Alarm auslösen. • Ein Erdbeben kann Alarm auslösen. • Der Alarm kann bewirken, dass Mary anruft. • Der Alarm kann bewirken, dass John anruft. KI 14-Bayes-Netze
Beispiel Bei Fehlalarm Zeitangabe nötig ! KI 14-Bayes-Netze
Kompaktheit • Eine CPT (conditional probability table) für Boolesche Xi mit k Booleschen Elternknoten hat 2k Zeilen für die Kombinationen der Werte der Elternknoten. • Jede Zeile erfordert je eine Zahl p für Xi = wahr(die Wahrscheinlichkeit für Xi = falsch ist 1-p). • Wenn jede von n Variable nicht mehr als k Elternknoten hat, erfordert die Spezifikation des gesamten Netzes O(n · 2k) Zahlen. • D.h. Aufwand wächst linear mit n gegenüber O(2n)für die vollständige gemeinsame Wahrscheinlichkeitsverteilung. • Für Einbruchsnetz: n=5, 1 + 1 + 4 + 2 + 2 = 10 Zahlen (gegenüber 25-1 = 31). KI 14-Bayes-Netze
Semantik Vollständige gemeinsame Wahrscheinlichkeitsverteilung ist Produkt der lokalen bedingten Wahrscheinlichkeitsverteilungen: P(X1, … ,Xn) = πi = 1P (Xi | Eltern(Xi)) z.B. P(j m a b e) = P(j | a) P(m | a) P(a | b, e) P(b) P(e) Beachte: Gerichtete Kanten können kausale oder diagnostischeAbhängigkeit bedeuten ! • AlarmJohnRuftAn : Kausale Abhängigkeit • JohnRuftAnAlarm : Diagnostische Abhängigkeit n KI 14-Bayes-Netze
Konstruktion von Bayes-Netzen • 1. Wähle eine Ordnung der Variablen X1, … ,Xn. • 2. for i = 1 to n • Füge Xi dem Netz hinzu. • Wähle Eltern von Xi aus X1, … ,Xi-1 so, dass gilt P (Xi | Eltern(Xi)) = P (Xi | X1, ... Xi-1). Durch diese Wahl der Elternknoten gilt: P (X1, … ,Xn) = πi =1P (Xi | X1, … , Xi-1) (Kettenregel) = πi =1P (Xi | Eltern(Xi)) (per definitionem) Einwand: „Wenn die Ordnung der Knoten willkürlich ist, sind die Eltern von Xi möglicherweise nicht in X1, … ,Xi-1 enthalten !“ Antwort: Dann werden die Eltern zu Kindern (Xi+1, … ,Xn), d.h. kausale / diagnostische Abhängigkeit wird vertauscht. n n KI 14-Bayes-Netze
Beispiel • Wähle Ordnung M, J, A, B, E P(J | M) = P(J)? KI 14-Bayes-Netze
Beispiel • Wähle Ordnung M, J, A, B, E P(J | M) = P(J)? Nein P(A | J, M) = P(A | J)?P(A | J, M) = P(A)? KI 14-Bayes-Netze
Beispiel • Wähle Ordnung M, J, A, B, E P(J | M) = P(J)? Nein P(A | J, M) = P(A | J)?P(A | J, M) = P(A)? Nein P(B | A, J, M) = P(B | A)? P(B | A, J, M) = P(B)? KI 14-Bayes-Netze
Beispiel • Wähle Ordnung M, J, A, B, E P(J | M) = P(J)? Nein P(A | J, M) = P(A | J)?P(A | J, M) = P(A)? Nein P(B | A, J, M) = P(B | A)? Ja P(B | A, J, M) = P(B)? Nein P(E | B, A, J, M) = P(E | A)? P(E | B, A, J, M) = P(E | A, B)? KI 14-Bayes-Netze
Beispiel • Wähle Ordnung M, J, A, B, E P(J | M) = P(J)? Nein P(A | J, M) = P(A | J)?P(A | J, M) = P(A)? Nein P(B | A, J, M) = P(B | A)? Ja P(B | A, J, M) = P(B)? Nein P(E | B, A, J, M) = P(E | A)? Nein P(E | B, A, J, M) = P(E | A, B)? Ja KI 14-Bayes-Netze
Beispiel • Erkennung bedingter Unabhängigkeit ist schwieriger bei nicht-kausaler Orientierung der Kanten. • Kausale Modelle und bedingte Unabhängigkeit sind beim Menschen offenbar „hardwired“ ! • Netz ist weniger kompakt: 1 + 2 + 4 + 2 + 4 = 13 Zahlen zur Beschreibung. KI 14-Bayes-Netze
Zusammenfassung • Bayes-Netze sind eine natürliche Repräsentation für bedingte Unabhängigkeit • Topologie + CPTs = Kompakte Repräsentation der gemeinsamen Wahrscheinlichkeitsverteilung • Experten einer Domäne können Bayes-Netze meist unschwer entwerfen. KI 14-Bayes-Netze