1 / 31

Electromagnetics (ENGR 367)

Electromagnetics (ENGR 367). Transmission Lines (T-lines). Introduction to T-lines. Function of T-line: to carry wave energy from one location to another T-line terminology origin of waves: source (e.g. generator) destination of waves: load (e.g. receiving device)

sharis
Download Presentation

Electromagnetics (ENGR 367)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Electromagnetics (ENGR 367) Transmission Lines (T-lines)

  2. Introduction to T-lines • Function of T-line: to carry wave energy from one location to another • T-line terminology • origin of waves: source (e.g. generator) • destination of waves: load (e.g. receiving device) • Value of transmitted electrical wave energy • provides light, heat or mechanical work, etc. • carries signal information • Audio: speech or music • Visual images: static or dynamic, real-time or replay • Data: computer, telemetry system, financial activity, etc.

  3. Examples of T-lines • Coax connection between the power amplifier and antenna of an RF broadcast system • Fiber optic cable links between networked computers • Power line connection between a generating plant and a distant substation • Connection between a cable TV service provider and a consumer’s set • Trace connections between devices on a PCB operating at HF

  4. What can electrical engineers understand and know how to do with Wave Phenomena on T-lines? • Treat them as circuit elements with a complex impedance that depends on length (l) and frequency (=2f) • Model wave propagation on them that behave as lossy, low loss, or approximately lossless • Handle multiple line sections that connect to split power, match impedance, etc. • Account for transient phenomena in T-lines in effect when they carry pulse/digital data

  5. Extraordinary Feature of T-lines • While the circuit model of a T-line includes parameters that depend on length, T-lines have a unique characteristic impedance independent of length! How can this be? • We start with two assumptions that take us beyond traditional circuit analysis!

  6. Two Assumptions:T-Line Theory vs. Circuit Analysis • If connection distance (d) between devices is • on the order of a wavelength or more (d > ~), then phase differences between devices may be appreciable and wave phenomena becomes significant • d << , then basic circuit analysis methods will suffice • If the dimension (D) of a circuit element from its input to output is • large compared to a wavelength (D >> ) then significant propagation time can exist through it and the element should be treated as distributed (i.e., using R,L,C,G/unit length) • D < , then a lumped (ideal) element approximation is OK

  7. Basic T-line Concepts • Many practical T-lines may be modeled approximately as a two-wire line • Closing the switch launches a wave-front from source (e.g., battery) to load (e.g. resistor, R) • The wave-front may be characterized by • Voltage V+ = V0 • Current I+

  8. Basic T-line Concepts • Practical T-line Modeled as a Two-wire line • V+, I+ wave-fronts travel at finite wave velocity (vp<c) so that voltages and currents along the line do not change instantaneously • vpdepends on equivalent circuit parameters related to the structure and with line length (l)determines the time/phase delay

  9. Circuit Model versus Field Modelfor Wave Propagation on T-lines • Circuit model: identifies equivalent circuit parameters for T-line and treats it in terms of voltage (V) and current (I) • Field model: applies Maxwell’s equations to line configuration to get functions for E, H followed by expressions for power (P), wave velocity (vp), etc.

  10. T-line Circuit versus Field Model:Applicability • Field model: a better approximation at high frequency (HF) and more useful to predict loss, complicated wave behavior • Circuit model: a better approximation at low frequency (LF) and simpler, so we will focus on this model for now

  11. T-line Theory: Circuit Model • Static electric and magnetic field analysis shows that • each real conducting wire by itself has • per unit length resistance R [/m] (ohmic loss) • per unit length inductance L [H/m] • two conducting wires separated from each other by a practical dielectric insulator have • per unit length conductance G [S/m] (leakage loss) • per unit length capacitance C [F/m]

  12. Equivalent Lumped Element Circuit Model Short T-line Section z

  13. Equivalent Impedance-Admittance Circuit Model Infinitessimal T-line Section dz where Zs = R+jL[/m] and Yp = G+jC [S/m] under the condition of time-harmonic osc.

  14. Derive the T-line Wave Equations • Treat voltage and current as time dependent phasor functions where • By Ohm’s Law applied to the T-line section dz

  15. Derive the T-line Wave Equations • Differentiating 1) and 2) w/r/to z and putting both terms on the LHS

  16. Derive the T-line Wave Equations • Substituting 2) into 3): • Substituting 1) into 4): Two simultaneous 2nd order differential equations

  17. Solutions to T-line Wave Equations in Complex Exponential Form • For the voltage function: • For the current function:

  18. Recall Euler’s Identity • Vital to understanding the wave functions • Shows how to find cos & sin functions in terms of their complex exponential counterparts

  19. Parameters of the T-line Wave Functions

  20. Explicit T-line Wave Functions in terms of  and  • The Voltage function: • The Current function: since  =  + j 

  21. Other Essential T-line Parameters • Characteristic Impedance (Z0)≡ratio of voltage to current anywhere along the line • from the circuit model with loss components, we have • thus the general characteristic impedance is Note: Z0 is independent of length!

  22. Other Essential T-line Parameters • Wave Propagation (Phase) Velocity (vp) • in terms of the basic wave parameters • and from the circuit model including loss components Note: expressions for Z0 and vp simplify in lossless case!

  23. Lossless T-line • Assumptions: R = 0, G = 0 • the characteristic impedance becomes • the propagation velocity becomes

  24. Low-loss T-line Approximation • Assumptions: R << L, G << C • Using the first three terms of the binomial series

  25. Low-loss T-line Approximation • Attenuation: • Phase Constant: • Characteristic Impedance: • Propagation Velocity: Note: expressions for , , Z0, and vp in terms of , R, L, G and C left for you to work out as HW!

  26. Example of Calculating T-line Wave Parameters from Circuit Parameters • Exercise (D11.1 from Hayt & Buck, 7/e, p. 347.) Given: an operating frequency of 500 Mrad/s and T-line circuit values of R = 0.2 /m, L = 0.25 H/m, G = 10 S/m, and C = 100 pF/m. Find: values for , , , vp and Z0 Solution: 1st check for the validity of any approximation

  27. Example of Calculating T-line Wave Parameters from Circuit Parameters • Exercise (D11.1 continued) Solution: lossless approximation good for everything except  so

  28. Summary • T-lines carry wave energy over distances valuable in RF broadcast, computer, cable TV, power and other HF applications • If the transmission distance and element dimensions are significant compared to a wavelength, then T-lines exhibit wave phenomena and distributed element behavior

  29. Summary • Many practical T-lines act like a two-wire line with voltage and current wave-fronts that propagate at finite speed • The circuit model of a T-line, applicable at lower frequencies, includes per unit length resistance (R), inductance (L), capacitance (C) and conductance (G) that lead to wave equations for voltage and current

  30. Summary • T-line wave equations are satisfied by complex exponential functions for voltage and current representing forward and backward sinusoidal traveling waves • Lossy, low-loss or lossless T-lines may be described by parameters including phase constant (), attenuation (), wavelength (), propagation velocity (vp) and characteristic impedance(Z0)

  31. References • Hayt & Buck, Engineering Electromagnetics, 7/e, McGraw Hill: New York, 2006. • Kraus & Fleisch, Electromagnetics with Applications, 5/e, McGraw Hill: New York, 1999.

More Related