1 / 54

A literature review on Melanie S. Sanford’s recent work. Presented by Guillaume Pelletier.

Palladium (II)/Palladium (IV) catalytic processes : new options to consider for C―H bonds activation. A literature review on Melanie S. Sanford’s recent work. Presented by Guillaume Pelletier. Outline of the presentation. Introduction to the concept of C-H bond activation Industrial processes

sharla
Download Presentation

A literature review on Melanie S. Sanford’s recent work. Presented by Guillaume Pelletier.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Palladium (II)/Palladium (IV) catalytic processes : new options to consider for C―H bonds activation. A literature review on Melanie S. Sanford’s recent work. Presented by Guillaume Pelletier.

  2. Outline of the presentation. • Introduction to the concept of C-H bond activation Industrialprocesses Interestingrecentwork in thisfield Applications in total synthesis • Oxidative C-H bond functionalizationusingPhI(OAc)2 and Pd(OAc)2. Crabtreeet al.work in the 1990’s. Melanie S. Sanford’sworkusingbenzo[h]quinoline Interestingmechanisticwork on the Pd(II)/Pd(IV) catalytic cycle Application of the Pd(II)/Pd(IV) concept to related and differentsystems. Formation of C-C bonds : mechanistic insights Formation of C-X bonds Synthesis of cyclopropanes throughenynes cyclisation Aminooxygenation of alkenes.

  3. Why C-H bonds are powerful tools to access to diversification of organic molecules? • Among the most abundant bonds… • …but also the least reactive bonds. • Could be a powerfull tool to convert a common bond into a linear alcohol, amines or α-olefins. • Direct conversion of a « unfunctionalized » bond (no oxidation/protection needed).

  4. A quick overview on the “C-H activation” in a simple industrial process. 2 CH4 + 4 H2SO4-Pd(II)  CH3CO2H + 4 SO4 + 6H2O Complimentary to the Mosento process 10% Overall Yield (could be improved by adding MeOH or CO) Harsh conditions used Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Science, 1998, 280, 560.

  5. A more complex problematic : Applications of C-H bond functionalisation in total synthesis. Bore, L.; Honda, T.; Gribble, G. W. J. Org. Chem. 2000, 65, 6278-6282.

  6. A more complex problematic : Applications of C-H bond functionalisation in total synthesis. Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900-6903.

  7. What were the major problematics to C―H bond functionalisation before 1990’s… • Usually there is low level of regiochemistry. • Harsh conditions are often used. • Low TON • Low functional group tolerance • Significant formation of byproducts • Large excess of substrate/oxidant/catalyst loading are typically required. • In summary, there is an open space to a lot of groups to circumvent any of these factors and to propose a more efficient transformation.

  8. Classification of the reactions with two different concepts. Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439-2463.

  9. Some pionnier work on efficient C―H bond activation/transformation. Chen, H.; Schlech, S.; Semple, C. T.; Hartwig, J. F. Science, 2000, 287, 1995-1997.

  10. Some pionnier work on efficient C―H bond activation/transformation. A lot of additive were screened. TfOH promoted the reaction. (26 to 91 % Yields) A large elctronic dependance over the substrates (kobs(OMe) ~ kobs(H)>>kobs(CF3)) Slow C-H bond activation (kH/kD = 3.5) Boele, M. D. K.; Strijdonck, G. P. F. V.; De Vries, A. H. M.; Kamer, P. C. J.; De Vries, J. G.; Leeuwen, P. W. N. M. V. J. Am. Chem. Soc. 2002, 124, 1586-1587.

  11. Some pionnier work on efficient C―H bond activation/transformation. An efficient methodology to form 1,3-difunctionalized amines through a selective C─H bond oxidation. The sulfamate ester is forming a nitrene-metal intermediate with the rhodium. Espino, C. G.; When, P. M.; Chow, J.; Du Bois. J. J.Am. Chem. Soc.2001, 123, 6935.

  12. Formation of C-O bonds by using a more friendly oxidant : PhI(OAc)2 Stock et al. reported earlier that Cr2O7- anion did promoted the oxidation of PhPd(OAc) species. Eberson et al. proposed previously to use peroxydisulfate as the oxidant. Stock, L. M.; Tse, I. J.; Walstrum, S. A. J. Org. Chem. 1981, 46, 1757-1761. Eberson, L.; Jönsson, L. Acta Chem. Scand. B. 1976, 30, 361-364.

  13. Kinetics of the reaction. • He found that PhPd(II)OAc intermediate fails to form the carbon-heteroatom bond. The most important fact to rememberisthat C-O bond isonlyformed on oxidation, presumably via a reductiveeliminationfrom a PhPd(IV)OAcspecies. Yoneyama, T.; Crabtree, R. H. J. Mol. Cat. A: Chem. 1996, 108, 35-40.

  14. Kinetics of the reaction and mechanism. • He found that k(H)/k(D) ~4.3 (C-H activation step is rate limiting). Yoneyama, T.; Crabtree, R. H. J. Mol. Cat. A: Chem. 1996, 108, 35-40.

  15. Some of Crabtree’s conclusions • Considering the regioslectivity of the acetoxylation of anisole (o:m:p = 44:5:51) the C-H insertion step is rather an electrophilic attack by the Pd (o:m:p ~ 60:0:30) than a oxidative addition/reductive elemination pathway (o:m:p = 12:76:12). • Sigma bond methathesis may be considered. • PhI(OAc)2 is a more selective and smooth oxidant than Cr2O7-. • PhI(OAc)2 favors the formation of C-O bonds from C-H bonds and not C-C homocoupling. Yoneyama, T.; Crabtree, R. H. J. Mol. Cat. A: Chem. 1996, 108, 35-40.

  16. About 10 years later… Dick, A. R.; Hull, K.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300-2301. Hartwell, G. E.; Lawrence, R. V.; Smas, M. J. J. Chem. Soc. Chem. Commun. 1970, 912.

  17. Melanie S. Sanford • She received her undergraduate degree in chemistry from Yale University in 1996 where she worked with Professor Robert Crabtree studying C-F bond functionalization. • She then moved to Caltech where she worked with Professor Robert Grubbs investigating the mechanism of ruthenium-catalyzed olefin metathesis reactions. • After receiving her PhD in 2001, she worked with Professor Jay Groves at Princeton University as an NIH post-doctoral fellow studying metalloporphyrin-catalyzed functionalization of olefins. • Melanie has been a professor at the University of Michigan since the summer of 2003.

  18. Her first paper about a Pd(II)/Pd(IV) oxidative functionalization of C-H bonds. • Very good yields were obtained without exclusion of air/moisture • She showed that the reaction tolerates variety of X = OAc, OMe, Br, Cl, OEt. • 2.5 equiv. PhI(OAc)2 gives the doubly acetylated products Dick, A. R.; Hull, K.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300-2301.

  19. Proposed catalytic cycle Using the cyclopalladated benzo[h]quinoline catalyst in the reaction without the oxidant does not form the product. Dick, A. R.; Hull, K.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300-2301.

  20. Precedents on the C-X bond formation in a similar mechanism. Han, R. Y.; Hillhouse, G. L. J. Am. Chem. Soc.1997, 119, 8135-8137 Williams, B. S.; Goldberg, K. I. J. Am. Chem. Soc. 2001, 123, 2576-2578

  21. Application of the concept to an sp3 carbon C-H bond. No β-hydroelimination product was observed due to Palladacycle rigidity. Desai, V. L.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542-9543

  22. High selectivity obtained at the ortho position. Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149-4172.

  23. An important observation : the selectivity of the reaction… Desai, V. L.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542-9543

  24. Other important observations… Oxidative cleavage of the C-O bond and C-H activation step are both highly stereoselective Desai, V. L.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542-9543

  25. Does Pd(IV) exist? Yamamoto, Y.; Kuwabara, S.; Matsuo, S.; Ohno, T.; Nishiyama, H.; Itoh, K. Organometallics, 2004, 23, 3898-3903. Canty, A. J.; Patel, J.; Rodemann, T.; Ryan, J. H. Skelton, B.W.; White, A. H. Organometallics, 2004, 23, 3466-3469.

  26. Does Pd(IV) exist? Càmpora, J.; Palma, P.; Del Rio, D.; Carmona, E.; Graiff, G.; Tiripiccio, A. Organometallics, 2003, 22, 3345-3349.

  27. To study the system, Pt(IV) is more suitable… Dick, A. R.; Kampf, J. W.; Sanford, S. M. Organometallics, 2005, 24, 482-485.

  28. Pt(II) is like Pd(II)… Huang, T. S.; Chen, J. T.; Lee, G. H.; Wang, Y. Organometallics, 1991, 10, 175-180.

  29. Design of new Pt(III) and Pt(IV) complexes Dick, A. R.; Kampf, J. W.; Sanford, S. M. Organometallics, 2005, 24, 482-485.

  30. Platinum (III) complex Treatment of this complex with 10 PhI(OAc)2 does not over oxidize it. Dick, A. R.; Kampf, J. W.; Sanford, S. M. Organometallics, 2005, 24, 482-485.

  31. Platinum (IV) complex synthesis With benzo[h] quinoline, with R = OMe, the ratio A:B is 2:1 and with R = OiPr A:B = 0.4:1. Stable (purified by chromatography) Dick, A. R.; Kampf, J. W.; Sanford, S. M. Organometallics, 2005, 24, 482-485.

  32. Platinum (IV) synthesis C-N ligand = Benzo[h]quinoline ROH = MeOH Dick, A. R.; Kampf, J. W.; Sanford, S. M. Organometallics, 2005, 24, 482-485.

  33. Various tests with the 8-Methylquinoline We see the same trend that the one observed with the palladium complex. When R is big for ROH, the ratio of product with 8-methylquinoline is less interesting than the one observed with small R group Dick, A. R.; Kampf, J. W.; Sanford, S. M. Organometallics, 2005, 24, 482-485.

  34. New Pd (IV) catalysts isolation Dick, A. R.; Kampf, J. W.; Sanford, S. M. J. Am. Chem. Soc. 2005, 127, 12790-12791.

  35. New Pd (IV) X-Ray Dick, A. R.; Kampf, J. W.; Sanford, S. M. J. Am. Chem. Soc. 2005, 127, 12790-12791.

  36. Reductive elimination step pathways Dick, A. R.; Kampf, J. W.; Sanford, S. M. J. Am. Chem. Soc. 2005, 127, 12790-12791.

  37. Reductive elimination step pathways: first approach. • If mechanism A is the right one, thenthereshouldbe a radical solventeffect on the speed rate of the reaction. BUT!! In polar acetone : ε = 21, krel = 1.0 ± 0.1 In apolarsolvent : ε = 2.3 krel = 1.0 ± 0.1 Dick, A. R.; Kampf, J. W.; Sanford, S. M. J. Am. Chem. Soc. 2005, 127, 12790-12791. Willams, B. S.; Goldberg, K. I. J. Am. Chem. Soc. 2001, 123, 2576-2578. Dick, A. R.; Kampf, J. W.; Sanford, S. M. J. Am. Chem. Soc. 2005, 127, 12790-12791.

  38. Reductive elimination step pathways: Erying studies. • Erying studies gives a value of +4.2 ± 0.4 and -1.4 ± 1.9 in DMSO and CDCl3 for ∆S†. • Typically, we see a value of -13 to -49 for C-C and C-Se reductive elimination with Pd(IV) Dick, A. R.; Kampf, J. W.; Sanford, S. M. J. Am. Chem. Soc. 2005, 127, 12790-12791. Canty, A. J.; Jin, H.; Skelton, B. W.; White, A. H. Inorg. Chem. 1998, 37, 3975-3978.

  39. Hammet studies with various X substituents. • Benzoate acts as a nucleophilic partner in the transformation (σ = -1.36 ± 0.04) • σ value of -1.5 with C-S coupling with Pd(II) which goes through a Mechanism type B • σ value of + 1.44 for reductive elimination from Pt(IV) (stabilization of the –OR moiety). Dick, A. R.; Kampf, J. W.; Sanford, S. M. J. Am. Chem. Soc. 2005, 127, 12790-12791.

  40. Reductive elimination step pathways : crossover reactions. • With these observations, mechanism A can be ruled out. Dick, A. R.; Kampf, J. W.; Sanford, S. M. J. Am. Chem. Soc. 2005, 127, 12790-12791.

  41. How to dicriminate between B and C? • Mechanism B and C are kinetically indistinguishable… Dick, A. R.; Kampf, J. W.; Sanford, S. M. J. Am. Chem. Soc. 2005, 127, 12790-12791.

  42. How can we push further the concept? Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047-14049.

  43. Possible mechanisms Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047-14049.

  44. Possible mechanisms Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047-14049.

  45. Important results Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047-14049.

  46. Important results • With these observations, mechanisms C and D can be ruled out. Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047-14049.

  47. Important results Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047-14049.

  48. Other methodologies: C-F bond formation. Hull, K. L.; Anani, Q. W.; Sanford, M. S. J. Am. Chem. Soc. 2007, 128, 7134-7135.

  49. Other methodologies: C-Cl, C-Br and C-I bond formation. Kalyani, D.; Dick, A. R.; Anani, W. Q.; Sanford, M. S. Org. Lett. 2006, 8, 2523-2526.

  50. Other methodologies: C-Cl, C-Br and C-I bond formation. Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142-15143.c

More Related