1 / 31

Two-locus systems

Two-locus systems. Scheme of genotypes. Two - locus genotypes. genotype. genotype. genotype. Multilocus genotypes. Two-locus two allele population. Gamete. p 1 p 2 p 3 p 4. Next generation on zygote level.

shawna
Download Presentation

Two-locus systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Two-locus systems

  2. Scheme of genotypes Two-locus genotypes genotype genotype genotype Multilocus genotypes

  3. Two-locus two allele population Gamete p1 p2 p3 p4 Next generation on zygote level Independent combination of randomly chosen parental gametes

  4. Table gametes from genotypes I (1-r) –no cross-over (r) – cross-over Type zygote- one locus is homozygotes Zygote Zygote (AB,Ab) have gamete (AB) with frequency 0.5(1-r)+0.5r=0.5 gamete 0.5(1-r) 0.5(1-r) 0.5(r) 0.5(r)

  5. Table gametes from genotypes II (r) – cross-over (1-r) –no cross-over Type zygote- both loci is heterozygotes Zygote Zygote (AB,ab) have gamete (AB) with frequency 0.5(1-r) gamete 0.5(1-r) 0.5(1-r) 0.5(r) 0.5(r)

  6. gamete Position effect

  7. Table zygote productions AB: p1’=p12+p1p2+p1p3+(1-r)p1p4+rp2p3 Evolutionary equation for genotype AB

  8. p1’=p12+p1p2+p1p3+(1-r)p1p4+rp2p3 p2’=p22+p1p2+p2p4+rp1p4+(1-r)p2p3 p3’=p32+p3p4+p1p3+rp1p4+(1-r)p2p3 p4’=p42+p3p4+p2p4+(1-r)p1p4+rp2p3 r is probabilities of cross-over (coefficient of recombination). Usually 0 r  0.5. If r=0.5 then loci are called unlinked (or independent). If r=0 then population transform to one loci population with four alleles. AB Ab aB ab p1 p2 p3 p4

  9. Measure of disequilibria D= p1p4-p2p3

  10. p1’=p1- rD;p2’=p2 +rD; p3’=p3+ rD; p4’=p4 - rD. p1+p2=p(A) p1+p3=p(B) AB Ab aB ab p1 p2 p3 p4 Gene Conservation Low p1’+ p2’ = p1+ p2=p(A); p1’+ p3’ = p1+ p3=p(B)

  11. Two-locus two allele population. Equilibria. p1=p1- rD;p2=p2 +rD; p3=p3+ rD; p4=p4 - rD. Measure of disequilibria D= p1p4-p2p3 D=0; p1p4 = p2p3

  12. p1= p(A)p(B); p2= p(A)p(b); p3= p(a)p(B); p4= p(a)p(b). In equilibria point the genes are statistically independence. But the genes are dependent physically, because are in pairs on chromosome Measure of disequilibria D= p1p4-p2p3

  13. Convergence to equilibrium p1’=p1- rD;p2’=p2 +rD; p3’=p3+ rD; p4’=p4 - rD. D’=p1’p4’- p2’p3’; D’=(p1- rD)(p4 - rD)-(p2 +rD)(p3+ rD) p1 p4-p2p3 -rD(p1+p2+p3+p4) +(rD)2-(rD)2 D’= D(n)=(1-r)nD(0); D’=D-rD=(1-r)D; Maximal speed convergence to equilibrium for r=0.5 D(n)=(0.5)nD(0);

  14. Gene Conservation Low p1’+ p2’ = p1+ p2=p(A); p1’+ p3’ = p1+ p3=p(B) p1= p(A)p(B); p2= p(A)p(b); p3= p(a)p(B); p4= p(a)p(b). Infinite set of equilibrium points

  15. p1’=p12+p1p2+p1p3+(1-r)p1p4+rp2p3 p2’=p22+p1p2+p2p4+rp1p4+(1-r)p2p3 p3’=p32+p3p4+p1p3+rp1p4+(1-r)p2p3 p4’=p42+p3p4+p2p4+(1-r)p1p4+rp2p3 r=0 p1’=p12+p1p2+p1p3+p1p4 = p1 p2’=p22+p1p2+p2p4+p2p3 = p2 p3’=p32+p3p4+p1p3+p2p3 = p3 p4’=p42+p3p4+p2p4+p1p4 = p4 p1’=p1- rD;p2’=p2 +rD; p3’=p3+ rD; p4’=p4 - rD.

  16. p1’=p12+p1p2+p1p3+(1-r)p1p4+rp2p3 p2’=p22+p1p2+p2p4+rp1p4+(1-r)p2p3 p3’=p32+p3p4+p1p3+rp1p4+(1-r)p2p3 p4’=p42+p3p4+p2p4+(1-r)p1p4+rp2p3 r=1 p1’=p12+p1p2+p1p3+p2p3 = (p1+p2)(p1+p3) = p(A)p(B) p2’=p22+p1p2+p2p4+p1p4 = (p1+p2)(p2+p4) = p(A)p(b) p3’=p32+p3p4+p1p3+p1p4 = (p3+p4)(p1+p3) = p(a)p(B) p4’=p42+p3p4+p2p4+p2p3 = (p3+p4)(p2+p4) = p(a)p(b) p1’=p1- rD;p2’=p2 +rD; p3’=p3+ rD; p4’=p4 - rD. D(n)=(1-r)nD(0);

  17. simulation

  18. Multilocus multiallele population Three loci

  19. Equilibrium point Equilibrium point=limiting point of trajectories

  20. General case

  21. M loci and L alleles in each locus

  22. Problem: definition of the linkage distribution. Nonrandom crossovers.

  23. definition of the linkage distribution.

  24. Equilibrium point for multilocus population

  25. Polyploids systems

  26. 4-ploids 2-ploids (diploids) Chromatid dabbling Four gamete produced

  27. Problem: definition of the coefficients.

  28. Polyploids systems

More Related