1 / 14

RESTRICTED BOLTZMANN MACHINES FOR IMAGE TAG SUGGESTION

RESTRICTED BOLTZMANN MACHINES FOR IMAGE TAG SUGGESTION. Michal Hradiš , Jiří Král. Vysoké učení technické v Brně , Fa kulta informačních technologií v Brně Bo ž et ě chova 2, 612 66 Brno zemcik , ihradis , herout @ fit.vutbr.cz 5 . 3 . 2012. Image tag suggestion.

sheba
Download Presentation

RESTRICTED BOLTZMANN MACHINES FOR IMAGE TAG SUGGESTION

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RESTRICTED BOLTZMANN MACHINES FOR IMAGE TAGSUGGESTION Michal Hradiš, Jiří Král Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Božetěchova 2, 612 66 Brno zemcik,ihradis,herout@fit.vutbr.cz 5.3.2012

  2. Image tag suggestion • Upload images to web repository • System suggests tags for the images • User picks from suggested tags Záhlaví (99.99.9999)

  3. forest outdoor person horse BOW singing Záhlaví (99.99.9999)

  4. RBM – RestrictedBoltzmanMachine v1= P(horse) h h3 h2 h1 v3 v2 v1 v P(horse) P(dancing) P(person) Záhlaví (99.99.9999)

  5. P(h1) = sig(w1 v + bh1) h3 h2 h1 v3 v2 v1 Záhlaví (99.99.9999)

  6. P(h) = sig(w v + bh) h3 h2 h1 v3 v2 v1 Záhlaví (99.99.9999)

  7. P(v1) = sig(w’1 h + bv1) h3 h2 h1 v3 v2 v1 Záhlaví (99.99.9999)

  8. P(v) = sig(w’ h + bv) h3 h2 h1 v3 v2 v1 Záhlaví (99.99.9999)

  9. Gibbs sampling • Algorithm • Start with random values of v • Compute P(h) • Take sample from P(h) • Compute P(v) • (Take sample from P(v)) • Continue … • Fix known variables in v h v Záhlaví (99.99.9999)

  10. CRBM h c v P(v) = sig(w’ h + bv), bv=Ac+ba P(h) = sig(w v + bh), bh=Bc + bb Záhlaví (99.99.9999)

  11. Semanticdetectors - TRECVID data • 340 classes, 400 hours of video, 18M shot-level annotation • outdoors, waterscape, mountains, door, singing, people, cars, dancing, politician, woman, children, face close-up, football • 340 classes x 8 bins per histogram = 2720 features Michal Hradis et al.:Semantic Class Detectors in Video Genre Recognition

  12. Záhlaví (99.99.9999)

  13. Záhlaví (99.99.9999)

  14. Záhlaví (99.99.9999)

More Related