1 / 19

CHEN, Li ( 陈丽 ) Fachbereich Mathematik und Informatik, Johannes Gutenberg-Universitat,

Mathematical Analysis on Parabolic System with Strong Cross-Diffusion (joint work with Prof. Ansgar Juengel). CHEN, Li ( 陈丽 ) Fachbereich Mathematik und Informatik, Johannes Gutenberg-Universitat, Mainz, Germany. Department of Mathematical Science,Tsinghua University,

sheena
Download Presentation

CHEN, Li ( 陈丽 ) Fachbereich Mathematik und Informatik, Johannes Gutenberg-Universitat,

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Mathematical Analysis on Parabolic System with Strong Cross-Diffusion (joint work with Prof. Ansgar Juengel) CHEN, Li (陈丽) Fachbereich Mathematik und Informatik, Johannes Gutenberg-Universitat, Mainz, Germany. Department of Mathematical Science,Tsinghua University, Beijing, P. R. China. http://faculty.math.tsinghua.edu.cn/faculty/~lchen/ strong cross-diffusion parabolic system

  2. Parabolic System Diffusion Matrix and Potential We will focus on the dicussion on the influences from the diffusion strong cross-diffusion parabolic system

  3. Population dynamics ai¸0 : the intrinsic growth rate of the i-th species b1,c2¸ 0 : the coefficients of intra-specific competitionb2,c1¸ 0 : the coefficients of inter-specific competition ¶tu ¶tv • r11Mu2- r12M(uv) • - r21M(uv)- r22Mv2 • u(a1- b1u- c1v) • = v(a2- b2u- c2v) • - d1Mu • - d2Mv Kinetic (ODE) Lotka-Volterra competition system ! Cross-Diffusion (strong coupled PDE) Shigesada et al.Theor. Biol.,1979, ! Diffusion (PDE) The solutions of Kinetic system depend on the constantsA,BandCin various cases. strong cross-diffusion parabolic system

  4. Boundary and Initial conditions for PDE system Diffusion(Heat equation) -¶t u+M u=0, in W£ (0,1) r¢g=0 on ¶W u(x,0)=y(x) in W u(x,t) is smooth for t>0 and strong cross-diffusion parabolic system

  5. 9 ! global smooth non-negative solution; (well known) • Long time behavior, P. N. Brown, P. de Mottonim (1980’s). • A>max{B,C}; (u,v)! (a1/b1,0) • A<min{B,C}; (u,v)! (0,a2/c2) • B>A>C (weak competition); (u,v)! (u*,v*)= • B<A<C (strong competition). • (a1/b1,0) and (0,a2/c2) are both locallystable • (u*,v*) is unstable • W convex, no stable positive steady-state solution (Kishimoto, Weinberger,1985) • W dumb-bell type, at least one stable positive… (Matano, Mimura,1983) • ……. (Y. Kan-on, E. Yanagida, M. Mimura, S. I. Ei, Q. Fang, H. Ninomiya……) strong cross-diffusion parabolic system

  6. PDE with strong cross-diffusion and self-diffusion Some known results on time dependent case • r11=r22=0 and no cross-diffusion for the second species • (global exis. & qualitative behavior) • Pozio & Tesei, 1990, Nonlin. Anal.; • Lou, Ni, & Wu, 1996, Adv. Math., Beijing; • Redlinger, 1995, J. Diff. Eqs.; • Choi, Lui, & Yamada, 2003, Discrete Contin. Dyn. Syst. • … … strong cross-diffusion parabolic system

  7. r11=r22=0and “small” cross-diffusion • (d1=d2=0,1-D, global exis.) Kim, 1984, Nonlin. Anal.; • (Global exis.) Deuring, 1987, Math. Z; • xTA(u,v)x¸min{d1,d2}|x|2 • (2-D, Global exis.) Yagi, 1993, Nonlin. Anal.; • (Global exis.) Galiano, Garzon &Juengel, 2001,Rev. Real Acad. Ciencias, Serie A. Mat . • For any di>0,rij>0 • (1-D, Global exis.) Galiano, Garzon &Juengel, 2003, Num. Math.; • (Multi-D. Global exis.) L, Chen & Juengel, 2004, SIAM J. Math. Anal. (Idea will be introduced later) strong cross-diffusion parabolic system

  8. Diffusion Matrix Main Features • Nonsymetric • Nonpositive definite • Degenerate (d1=d2=0) It is hard to use classical techenics (such as maximum principle to get a priori estimates) on such system due to strong cross-diffusion. strong cross-diffusion parabolic system

  9. Idea(Approximation+A priori estimates) • Exponential transformationu=exp{fu} , v=exp{fv}, Symetric and non-negative definite. New difficulties: time derivatives¶t[exp{fu}], ¶t[exp{fv}]. strong cross-diffusion parabolic system

  10. Relative entropy y(x)=x(ln x-1)+1 Entropy inequality It can be formally derived by using ln u and ln v as the test function in the weak formulation of the problem. strong cross-diffusion parabolic system

  11. Compactness Argument(omitted) • Approximation • Semi-discretization in time difficulty: cross-diffusionM(uv) Approximated by finite difference Besides these, we need other regularizations, such as • Fully discretization both in time and space • Finite difference in time • Decomposition:(0,T]=[k=1K((k-1)t,kt], t=T/K • Galerkin method in space strong cross-diffusion parabolic system

  12. Existence of the weak solution Asumptions ¶W2 C0,1 , N¸ 1, di¸ 0, rij>0, ai,bi,ci¸ 0, i,j=1,2. u0,v02 LY(W), u0,v0¸ 0. The existence can be also obtainedin the case without self-diffusion, which is useful to study the pattern formation. (introduce later) strong cross-diffusion parabolic system

  13. Q: Long time behavior of the solution Steady state solution (Y.Lou, W.Ni, H. Matano, M. Mimura, Y. Nishiura, A. Tesei, T. Tsujikawa,Y.Kan-on…) • r21=0, (trianglular cross-diffusion case) D. Le, L. Nguyen, T. Neuyen, (2002,2003) • Few other results until now… • Large di(diffusion) or rii(self-diffusion) no non-constant steady state solution (NCSS) • In weak competition case, if r12, r21 (cross-diffusion) are samll, No NCSS • In weak competition case, if r12 or r21(cross-diffusion) large, NCSS exists • Do nonconstant steady solution exist if both cross-diffusion r12 and r21 are large and qualitatively similar? There are also some results on steady state solution and some stability results with vanishing Dirichlet boundary data. strong cross-diffusion parabolic system

  14. Entropy-entropy production methodfor long time behavior It holds thatwithout self-diffusion(more reasonable) This inequality can be obtained directly from the approximate problem by choosing appropriate test function. strong cross-diffusion parabolic system

  15. logarithmic Sobolev inequality ) • Csiszar-Kullback inequality for logarithmic relative entropy ) • Discussion on Steady state solution ) No non-constant steady state solution strong cross-diffusion parabolic system

  16. Long time behavior of the weak solution Steady state solution a1 ,a2 ,b1 ,c2 > 0, c1= b2= 0 • No Non-constant steady state solution • The only possible steady state solution is (u*,v*)=(a1/b1,a2/c2). strong cross-diffusion parabolic system

  17. Conclusion • Existence • No restriction on the diffusion coefficients diand rij • The global existence result holds in any space dimension • The method provides the existence of non-negative solution • The degenerate case di=0 and no self-diffusion case riican be also treated • Long time behavior • Give some convergence rate of the entropy • No NCSS exist even with strong cross-diffusion in the case of vanishing source terms or vanishing inter-specific competition strong cross-diffusion parabolic system

  18. Future problems • Uniqueness and regularity of the weak solution • Long time behavior in more general cases • …… strong cross-diffusion parabolic system

  19. Thank you! 谢谢! strong cross-diffusion parabolic system

More Related