150 likes | 358 Views
H8 FLUKA simulations. Marco Garattini INFN - Roma “La Sapienza” “H8 Analysis for UA9 Experiment ” 12 March 2013 - CERN. Outline. H8 FLUKA simulations : - Goal of the simulations - Input: Geometry , beam , scoring regions etc…
E N D
H8 FLUKA simulations Marco Garattini INFN - Roma “La Sapienza” “H8 Analysisfor UA9 Experiment” 12 March 2013 - CERN
Outline • H8 FLUKA simulations: - Goal of the simulations - Input: Geometry, beam, scoringregionsetc… - Output: particlesscored, informationsscored • Scintillatorscan score • π±tounderstandNuclearInteractions • Air VS Vacuum • Polystyrene Trigger simulations • Conclusions and future prospects 12 March 2013 - CERN
Goalsof the H8 FLUKA simulations • Understandbetter the NuclearInteractionsof the beamwith the Crystals • Test the detectorsperturbations on the beam • Test the enviromentalconditions: Air VS Vacuum • Find the best position and material fortriggers, detectors and instrumentations
My H8 Geometryfor FLUKA M. Pesaresi,1 W. Ferguson, J. Fulcher, G. Hall, M. Raymond, M. Ryan and O. Zorba Crystal STF2 Silicon Δx = 1 mm Δy = 50 mm Δz = 2 mm Two Si sensorsoverlap S = 38 x 38 mm2 Δz = 640 µm
Input Beam • Protons • N = 106 • E = 400 GeV • Flat, rectangular: 1 mm x 1mm • Divergence: 8 µrad • Centered on the Telescopes and the Crystal
ScoringRegion ScintillatorScanfrom SiTel1 to SiTel5 • Valume : (X = 10 cm) x (Y = 10 cm) x (Z = 2120 cm) • Distancefrom the beamaxis: 10 cm • Score binning: every 10 cm • Medium: Air or Vacuum
ScoredParticles Fluencealong Z direction: Φ = dN/dA┴ • Protons • Electron ± • Pions ± (the resultofNuclearInteractionsof the protonswith Si) • Pions 0 • Muons ± • Neutrons • Photons • Fluencevalues are per cm2 and normalizedto the numberofinitialparticles: • N = 106 p • A = (10 x 10) = 100 cm2
π±FluencePlots SiTel-1-2-3-4-5 Crystal STF2 (no channeling) Φ Φ 4.5 x 103 4.0 x 103 π ± π ± z z Air With Crystal Air No Crystal SiTel-1: z = 0 cm SiTel-3: z = 1100 cm SiTel-2: z = 1029 cm SiTel-4: z = 1122 cm STF72: z = 1058 cm SiTel-5: z = 2118 cm
π±FluencePlots SiTel-1-2-3-4-5 Crystal STF2 Φ Φ π ± π ± 1 x 103 1.8 x 103 z z VaccumWith Crystal Vacuum No Crystal SiTel-1: z = 0 cm SiTel-3: z = 1100 cm SiTel-2: z = 1029 cm SiTel-4: z = 1122 cm STF72: z = 1058 cm SiTel-5: z = 2118 cm
Best Scintillator Z position Tounderstandwhichis the best Z position for the Scintillator, I havecomputed the ratio: R = Φ(WithCry)/ Φ (NoCry) Obtaining the position of the high ratioofπ±fluencein the twocases. Φ(With)/Φ(No) The best position for the Scintillator: - Z=1100 cm from the SiTel-1 - The sameZ of the SiTel-3 - X =10 cm from the beamaxis z
Polystyrene Trigger Upstream Φof π ± 7.5 x 102 5 x 102 ΔZ = 1 cm ΔZ = 5 mm • - Polystyrene • - ρ = 1.06 g/cm3 • A = (5 x 5) cm2 • Z = 0 • 9 cm before • SiTel-1 2.5 x 102 ΔZ = 1 mm
Conclutions • The Crystal increases the numbersof π ±, asresultof the NuclearInteractions • The best position for the Scintillatoris: X= 10 cm withrespectto the beamaxis Z = 1100 cm from the SITel-1 • The “Air effects” are evident • The UpstreamPolystyrene Trigger producesperturbations on the beam: - thicknessof 5 mm maybe ok ?
Future prospects • SimulationswithLeadIonsbeam: • - work in progress… • Integrationofadditionalcomponents on the • H8 line: triggers, differentcrystals, detectorsetc.. • Implementationofadditionalgeometrydetails 12 March 2013 - CERN