350 likes | 497 Views
2006 World Congress on Chinese Medicine/Hong Kong. Potential Application in TCM Research: Polyamines and mRNA Stability in Epithelial Cells. Jian-Ying Wang, MD, Ph.D University of Maryland School of Medicine. a) Normal b) Atrophy. Specific regulation of gut mucosal growth.
E N D
2006 World Congress on Chinese Medicine/Hong Kong Potential Application in TCM Research: Polyamines and mRNA Stability in Epithelial Cells Jian-Ying Wang, MD, Ph.D University of Maryland School of Medicine
Specific regulation of gut mucosal growth • Gut mucosa is affected by its own set of hormones such as gastrin, EGF, and CCK • The mucosa is exposed to a variety of luminal constituents and factors
Polyamines • Polyamines are organic cations found in all eukaryotic cells • Polyamines are intimately involved in, and required for, distinct biological functions • To be required for cell proliferation • To induce cell migration • To stabilize cell membrane • To be involved in apoptosis • To modulate membrane channel activity
Polyamine Biosynthesis Hormones DFMO - + Growthfactors Antizyme Nutrients DN-ODC Damage CO2 + NH3 + - H3N O Ornithine O Ornithine decarboxylase + + H3N NH3 Putrescine H H + + + N H3N NH3 Spermidine H H + + H3N N + N NH3 + H H Spermine
Polyamines and Gastrointestinal mucosal growth • GI mucosal growth depends on the supply of polyamines to the dividing cells in the crypts • Polyamines are essential for stimulation of IEC proliferation, at least in part, by inhibiting expression of p53 and nucleophosmin (NPM) genes • Decreasing cellular polyamines induces posttranscription, but not transcription, of p53 and NPM
p53 expression in intestinal mucosa after polyamine depletion A. p53 mRNA DFMO+PA Control DFMO -p53 -GAPDH 1 2 3 B. p53 Protein kDa -p53 46- 1 2 3 Am J Physiol 281:C441, 2001
p53 expression in cultured IECs after polyamine depletion A B a. p53 mRNA a. p53 gene transcription DFMO+SPD DFMO+SPD Control DFMO Control DFMO -p53 -p53 -pCRTMII -GAPDH -GAPDH 1 2 3 4 5 6 b. Relative mRNA Levels b. Relative Transcription Rate 1 2 3 1 2 3
Cytoplasmic half-life studies of p53 mRNA in IECs after polyamine depletion A B a. Control 0 20 40 60 80 160 Time (min) -p53 -GAPDH b. DFMO 0 60 120 240 480 960 Time (min) -p53 -GAPDH c. DFMO+SPD 0 20 40 60 80 160 Time (min) -p53 Gastroenterology 123:764, 2002 -GAPDH
Cytoplasmic half-life studies of NPM mRNA in IECs following polyamine depletion A B Control DFMO DFMO+PUT Marker 0 30 60 120 240 0 60 120 240 360 0 30 60 120 240 400- 300- -NPM 200- 100- 400- -Actin 300- 200- Am J Physiol 289:C686, 2005
Intestinal epithelial cell proliferation following polyamine depletion in vitro A. Growth B. G1 Phase Cells * Control DFMO+SPD Cell Numbers (×106) % Cells in G1 Phase DFMO Con DFMO DFMO + SPD Time (days)
HuR protein • HuR is a RNA-binding protein and regulates the stability and translation of target mRNAs • HuR is predominantly (>90%) present in the nucleus of unstimulated cells, but can be exported to the cytoplasm in response to stress • HuR specifically binds to U- and UA-rich elements located in the 3’-untranslated regions (3’-UTRs) of target mRNAs
Increased cytoplasmic levels of HuR following polyamine depletion 4 days 6 days DFMO+PUT DFMO+PUT Control Control DFMO DFMO kDa 34- -HuR Cytoplasmic -Actin 42- 67- -Lamin B -HuR 34- Nuclear -Lamin B 67- Total -HuR 34- J Biol Chem 281:19387, 2006
Cellular distribution of HuR after polyamine depletion Control DFMO DFMO+PUT
Characterization of stable ODC-transfected IEC cells A B Vector alone ODC-IEC-C1 ODC-IEC-C2 Parent IEC-6 ODC Activity (pmol/h/mg protein) -ODC -Actin 1 2 3 4 1 2 3 4 Biochem J398:257, 2006
Changes in HuR protein in stable ODC-IEC cells ODC-IEC-C1 ODC-IEC-C2 Vector alone kDa 34- -HuR Cytoplasmic 42- -Actin 67- -Lamin B 34- -HuR Nuclear 34- -Lamin B 34- Total -HuR
UA-rich sequences in 3'-UTR of p53 mRNA p53 mRNA 5’UTR CR 3’UTR 1 2629 252 CR 1434 3’UTR 2181 ucaauuucuuuuuucuuuuuuuuuuuuuuuuuucuuuuucuuu 2223 2574 uuuuuauacccauuuuuauaucgaucucuuauuuuacaauaaaacuuu 2622
Induced cytoplasmic HuR directly binds to 3'-UTR of p53 mRNA A. Binding to 3'-UTR 4 days 6 days DFMO+PUT DFMO+PUT Control Control DFMO DFMO kDa 34- -HuR -Actin 42- B. Binding to CR kDa 34- -HuR
UA-rich sequences in 3'-UTR of NPM mRNA NPM mRNA 5’UTR CR 3’UTR 1 1304 97 CR 981 3’UTR 983 aaaauaguuuaaacaauuuguuaaaaaauuuu 1114 1257aaaaauauacaugugaaauaaaacucaguauuuuaauaaaguaaaa 1304
Induced cytoplasmic HuR directly binds to 3'-UTR of NPM mRNA A. Binding to 3'-UTR 6 days 4 days DFMO+PUT DFMO+PUT Control Control DFMO DFMO kDa 34- -HuR 42- -Actin B. Binding to CR 34- -HuR
The binding of endogenous HuR to endogenous NPM and p53 mRNAs A B +HuR +IgG1 a. NPM mRNA b. p53 mRNA Control Control Marker DFMO DFMO * * bp Relative mRNA levels 300- -NPM 200- 600- 400- -p53 300- Control DFMO Control DFMO
Effect of transfection with specific siRNA on levels of HuR in polyamine-deficient cells DFMO C-siRNA Control SiHuR kDa 34- -HuR 42- -Actin
Effect of HuR inhibition by siRNA on stability of p53 and NPM mRNAs A B DFMO a. NPM mRNA b. p53 mRNA C-siRNA Control DFMO +C-siRNA SiHuR kDa 38- -NPM DFMO +siHuR % RNA remaining Control -p53 53- 42- -Actin Time (min) Time (min)
AMP-activated protein kinase (AMPK) and importin-1 • AMPK is an enzyme involved in responding to metabolic stress • Recently, AMPK is shown to induce an accumulation of nuclear HuR • The effect of AMPK on HuR nuclear translocation is mediated through importin-1 , an adaptor protein involved in nuclear import
Changes in levels of AMPK in IEC-6 cells after polyamine depletion 4 days 6 days DFMO+PUT DFMO+PUT Control DFMO Control DFMO kDa Total 62- -AMPK Nuclear 62- -AMPK 62- -AMPK -Phospho-AMPK Cytoplasmic 62- 42- -Actin
Changes in AMPK and Importin-1 in cells overexpressing ODC A. AMPK B. Importin-1 ODC-IEC-C2 ODC-IEC-C2 ODC-IEC-C1 ODC-IEC-C1 Vector alone Vector alone -Cytoplasmic -Nuclear -Total -Actin
Effects of overexpression of AMPK on cytoplasmic HuR in polyamine-deficient cells AdAMPK(pfu/cell) 0 10 50 100 -AMPK 62- 62- -Phospho-AMPK 60- -Importin-1 -HuR 34- 42- -Actin
Effects of overexpression of AMPK on levels of cytoplasmic HuR in control cells AdAMPK(pfu/cell) 0 10 50 100 62- -AMPK 62- -Phospho-AMPK -Importin-1 60- 34- -HuR 55- -Tubulin
Importin-1 Constructs Ac P Importin-1 22 105 529 Lys Ser Imp1 (K22R) 22 Imp1 (S105A) 105 Imp1 (K22R/S105A) 22 105
Characterization of stable importin-1-transfected IEC-6 cells Mut-Impα1 K22R/S105A WT-Imp-1 Vector alone K22R S105A -His-Tag -β-Tubulin
Changes in cytoplasmic levels of HuR in IECs overexpressing wide-type or mutated importin-1 Mut-Impα1 K22R/S105A WT-Imp-1 Vector alone K22R S105A -HuR Cytoplasmic -β-Tubulin -HuR Total -β-Tubulin
Effect of increased AMPK on cytoplasmic HuR levels in mutated importin-α1-transfected IEC cells A. IEC-6 cells B. Mutated Imp-IEC cells Null AdAMPK K22R/S105A K22R/S105A AdAMPK S105A S105A K22R K22R Null -AMPK -HuR (Cyto) -HuR (Total) -β-Tubulin
mRNA 5‘-UTR CR 3‘-UTR aaaauaguuuaaacaauuuguuaaaaaauuuu HuR HuR HuR HuR mRNA stability Polyamines HuR mRNA levels AMPK/Imp-α NPM HuR p53 Protein expression NPM p53 p21 gene p21 activity Cell Proliferation
Collaborators:Myriam Gorospe, Ph.D (NIH) Robert A. Casero, Jr. Ph.D (JHU) Wang’s Lab:Jaladanki N. Rao, Ph.D Li Li, MDJi Li, MD Anami R. Patel, Ph.DXin Guo, MD, Ph.D Lan Liu, MDLan Xiao, MD Ai-Hong Zhang, Ph.DTongtong Zhou, Ph.D Huifang M. Zhang, Ph.D Douglas J. Turner, MD Eric D. Strauch, MDBernard S. Marsa, MS Kaspar M. Keledjian, MDJie Chen, Ph.D Jose Greenspon, MD