210 likes | 326 Views
Entanglement of Macroscopic Ensembles (Schroedinger’s Cat). Team: Alex Heifetz (Graduate Student) Dr. Ashish Agarwal (Post-Doc) Prof. Prem Kumar (Collaborator) Prof. Philip Hemmer (Texas A&M; collaborator) Prof. Saxena (Visitor). Supported By: DARPA, NSF .
E N D
Entanglement of Macroscopic Ensembles (Schroedinger’s Cat) Team: Alex Heifetz (Graduate Student) Dr. Ashish Agarwal (Post-Doc) Prof. Prem Kumar (Collaborator) Prof. Philip Hemmer (Texas A&M; collaborator) Prof. Saxena (Visitor) Supported By: DARPA, NSF
GENERATING ENSEMBLE ENTANGLEMENT LASER ENS 1 DET 1 d BS |e> |g> ENS 2 DET 2 DET 1
1 0 d L C |e> 1 0 |g> ADVANTAGE OF THE MACROSCOPIC APPROACH
or Cavity Mode System • Field + Atom + Cavity e e Laser Field b b a a
Wavefunction where • Initial condition before the interaction
Light in state Number states e b a
Time evolution If we design the system such that then time evolution reduces to
Laser in state Coherent State • Photon distribution • Coupling constant • Wavefunction
d or Cavity Mode Result e Classical Laser Field b a
Interaction time Single Photon Detector
A Laser A D1 B B D2 Set-up for Entanglement generation
Entangled Atomic States Conditional click in Either D1 Or D2 Photon Annihilation in Detector = Atom A Atom B Projected Atomic State
Single Photon Detector Many Particle System
Collective Enhancement Collective enhancement factor
A Laser A D1 B B D2 Entanglement of atomic ensembles Conditional on detector click, Atomic ensembles are Entangled:
F=1 P3/2 F=2 P3/2 Atomic Ensemble: 87Rb P3/2 Laser Field Raman signal F=2 6.8347 GHz F=1 6.8347 GHz 6.8347 GHz
Ti-Sapphire Laser Argon ion Laser l/2 Rb Heat- Pipe Oven Raman Spectroscopy Set-up
Rubidium Raman Laser Ti-Sapphire Laser Argon ion Laser p Spectrum Analyzer l/2 p OC PZT s Rb Heat Pipe Oven
TRAPPING OF LIGHT IN A Pr:YSO CRYSTAL “Observation of Ultraslow and Stored Light Pulses in a Solid,” A. V. Turukhin, V.S. Sudarshanam, M.S. Shahriar, J.A. Musser, B.S. Ham, and P.R. Hemmer, Phys. Rev. Lett.88, 023602 (2002).