560 likes | 805 Views
Digital Signal Processing 2 Les 1: Inleiding 1. Prof. dr. ir. Toon van Waterschoot Faculteit Industriële Ingenieurswetenschappen ESAT – Departement Elektrotechniek KU Leuven, Belgium. Onderzoeksafdeling.
E N D
Digital Signal Processing 2Les 1: Inleiding 1 Prof. dr. ir. Toon van WaterschootFaculteit Industriële IngenieurswetenschappenESAT – Departement ElektrotechniekKU Leuven, Belgium
Onderzoeksafdeling • STADIUSCentrum voorDynamischeSystemen, Signaalverwerking en Data-Analyse: • DynamischeSystemen:identificatie, optimalisatie, regeltechniek, systeemtheorie • Signaalverwerking: spraak- & audioverwerking, digitalecommunicatie, biomedischesignaalverwerking • Data-Analyse: machine learning, bio-informatica • AdvISe– Advanced Integrated Sensing Lab: • Biomedisch:biomedischetechnologie,ambient assisted living • Audio:akoestischemodellering, audio-analyse, akoestischesignaalverbetering • Chip-ontwerp:stralingshardeelektronica
Onderzoekstopics • Audio signal analysis • speech recognition • event detection • source localization • audio classification • Acoustic modeling • ear modeling • room modeling • loudspeaker modeling • signal modeling • Acoustic signal enhancement • noise reduction • echo/feedback control • room equalization
Contactgegevens Toon van Waterschoot • Mail: toon.vanwaterschoot@esat.kuleuven.be • Kantoor (enkel op maandag + donderdag): KU Leuven Campus Geel, lokaal P220
Digital Signal Processing 2: Vakinhoud • Les 1: Inleiding 1 (Discrete signalen en systemen) • Les 2: Inleiding 2 (Wiskundige concepten) • Les 3: Spectrale analyse • Les 4: Elementair filterontwerp • Les 5: Schattingsproblemen • Les 6: Lineaire predictie • Les 7: Optimale filtering • Les 8: Adaptieve filtering • Les 9: Detectieproblemen • Les 10: Classificatieproblemen • Les 11: Codering • Les 12: Herhalingsles
Digital Signal Processing 2: Lesmateriaal • Slides • slides = basis lesmateriaal • vakinhoudverschiltgrondig van vorigejaren! • slides wordenenkeledagenvoorelke les op Toledo geplaatst • Cursustekst • geenvastecursustekst • voor de meeste lessen wordtereenhoofdstukuiteen (Engelstalig) boek of eenartikel op Toledo geplaatst
Digital Signal Processing 2: Labo • Doel: Implementieaspecten van DSP + implementatieproject op TMS320C5515 DSP • Docent: Peter Karsmakers (peter.karsmakers@kuleuven.be) • Uurrooster: 13 x 2u (wekelijks op woensdagochtend)
Digital Signal Processing 2: Examen • Examenvormtheorie: • mondeling met schriftelijkevoorbereiding • open of geslotenboek (terbespreking met collega-docenten) • Puntenverdeling: eindcijfer= gewogengemiddelde van theorie- en praktijkexamens DSP-1 en DSP-2 • DSP-1: 34% • DSP-1 practicum: 12% • DSP-2: 34% • DSP-2: practicum: 20%
Digital Signal Processing 2: Vakinhoud • Les 1: Inleiding 1 (Discrete signalen en systemen) • Les 2: Inleiding 2 (Wiskundige concepten) • Les 3: Spectrale analyse • Les 4: Elementair filterontwerp • Les 5: Schattingsproblemen • Les 6: Lineaire predictie • Les 7: Optimale filtering • Les 8: Adaptieve filtering • Les 9: Detectieproblemen • Les 10: Classificatieproblemen • Les 11: Codering • Les 12: Herhalingsles
Les 1: Inleiding 1 • Introduction motivation, examples • Discrete-time signals sampling, quantization, reconstruction • Discrete-time systems LTI, impulse response, FIR/IIR, causality & stability, convolution & filtering, …
Les 1: Literatuur • Introduction • Discrete-time signals S. J. Orfanidis, Introduction to Signal Processing • Ch. 1, “Sampling and Reconstruction” • Ch. 2, “Quantization” M. H. Hayes, Statistical Digital Signal Processing and Modeling • [summary] Ch. 2, Section 2.2.1 • Discrete-time systems S. J. Orfanidis, Introduction to Signal Processing • Ch. 3, “Discrete-Time Systems” • Ch. 4, “FIR Filtering and Convolution” M. H. Hayes, Statistical Digital Signal Processing and Modeling • [summary] Ch. 2, Sections 2.2.2, 2.2.3
Les 1: Inleiding 1 • Introduction motivation, examples • Discrete-time signals sampling, quantization, reconstruction • Discrete-time systems LTI, impulse response, FIR/IIR, causality & stability, convolution & filtering, …
Introduction: overview • Digital signal processing? • Analog vs. digital signal processing • Example: design of a delay audio effect • in the analog world • in the digital world
Introduction: digital signal processing? Digital signal processing? • Signal: a physical quantity which varies as a function of some independent variable(s) • 1-dimensional: sound signal (mechanical/electrical), electromagnetic signal (wired/wireless), chemical concentration, … • 2-dimensional: image • … • N-dimensional: … • Independent variable: time, position, frequency, … here…
Introduction: digital signal processing? Digital signal processing? • Processing: altering the signal characteristics to improve signal quality • equalization: to undo the (frequency-selective) effect of passing the signal through a system (channel) • noise reduction: to remove noise/interference • signal separation: to separate multiple signals which are present in one measurement • modulation: to prepare a signal for being transmitted through a frequency-selective channel • … • Processing ~ Filtering
Introduction: digital signal processing? Digital signal processing? • Digital: the signal processing is performed by a finite number of operations using a finite number of digits • discretization of independent variable: the signal is sampled w.r.t. the (continuous) independent variable (e.g., discrete time, discrete frequency, …) • discretization of signal value: the signal value (amplitude) is approximated on a discrete scale (quantization) • Bits: digital signals are often represented using binary digits = bits
Introduction: analog vs. digital SP Analogsignal processing: “how things used to be” Analog world Analog electrical signal processing circuit Analog IN Analog OUT
Introduction: analog vs. digital SP Digital signal processing in the analog world Analog world Digital world Analog world Digital-to- analog conversion Analog-to- digital conversion 0110100101 1001100010 DSP Analog IN Digital IN Digital OUT Analog OUT
Introduction: analog vs. digital SP • Analog world • Analog input: microphone voltage, satellite receiver voltage, … • Analog output: loudspeaker voltage, antenna voltage, … VIN 0 VOUT 0
Introduction: analog vs. digital SP Digital signal processing in the analog world Analog world Digital world Analog world Digital-to- analog conversion Analog-to- digital conversion 0110100101 1001100010 DSP Analog IN Digital IN Digital OUT Analog OUT
Introduction: analog vs. digital SP • Digital world • Digital signal processor (DSP): microprocessor designed particularly for signal processing operations, incorporated in sound card, modem, mobile phone, mp3 player, digital camera, digital tv, hearing aid, …
Introduction: design example • Goal: design and implement an audio effect which mixes a scaled and delayed version of an audio signal to the original signal Example: design of a “delay” audio effect mixing operation Analog IN Analog OUT scaling operation delay operation
Introduction: design example Example: design of a “delay” audio effect • Analog design: mixing operation Analog IN Analog OUT delay operation scaling operation
Introduction: design example Example: design of a “delay” audio effect • Digital design: y[k] x[k] mixing operation y[k] = x[k] + K*y[k-D] ADC DAC Analog IN Analog OUT write new sample buffer = {y[k], y[k-1], … y[k-D]} read delayed sample delay operation • inside • the DSP scaling operation K*y[k-D]
Introduction: design example Example: design of a “delay” audio effect • Analog design: • design of analog circuits • manufacturing of print board • assembly of analog components • Digital design: • design of digital algorithm • compilation on digital signal processor circuit design algorithm design application-specific hardware re-usable hardware
Les 1: Inleiding 1 • Introduction motivation, examples • Discrete-time signals sampling, quantization, reconstruction • Discrete-time systems LTI, impulse response, FIR/IIR, causality & stability, convolution & filtering, …
Discrete-time signals: overview • A/D conversion: sampling and quantization • time-domain sampling & spectrum replication • sampling theorem • anti-aliasing prefilters • quantization • oversampling and noise shaping • D/A conversion: reconstruction • ideal vs. realistic reconstructors • anti-image postfilters • Conclusion: DSP system block scheme
Discrete-time signals: sampling-quantization Analogsignal processing Joseph Fourier (1768-1830) Analog Domain (Continuous-Time Domain) Analog Signal Processing Circuit Analog IN Analog OUT (=Spectrum/Fourier Transform)
Discrete-time signals: sampling-quantization Analog world Digital world Analog world Digital-to- analog conversion Analog-to- digital conversion 0110100101 1001100010 DSP Analog IN Digital IN Digital OUT Analog OUT sampling quantization
amplitude impulse train discrete-time [k] Discrete-time signals: sampling • time-domain sampling amplitude continuous-time signal discrete-time signal 0 1 2 3 4 continuous-time (t) It will turn out that a spectrum can be computed from x[k], which (remarkably) will be equal to the spectrum (Fourier transform) of the (continuous-time) sequence of impulses =
Discrete-time signals: sampling • spectrum replication • time domain: • frequency domain: magnitude magnitude frequency (f) frequency (f)
Discrete-time signals: sampling • sampling theorem • the analog signal spectrum has a bandwidth of fmaxHz • the spectrum replicas are separated with fs=1/Ts Hz • no spectral overlap if and only if magnitude frequency
Discrete-time signals: sampling • sampling theorem: • terminology: • sampling frequency/rate fs • Nyquist frequency fs/2 • sampling interval/period Ts • e.g. CD audio: • anti-aliasing prefilters: • if then frequencies above the Nyquist frequency will be ‘folded back’ to lower frequencies = aliasing • to avoid aliasing, the sampling operation is usually preceded by a low-pass anti-aliasing filter Harry Nyquist (7 februari 1889 – 4 april 1976)
amplitude amplitude 3Q 2Q Q R 0 -Q -2Q -3Q discrete time [k] discrete time [k] Discrete-time signals: quantization • B-bit quantization quantized discrete-time signal =digital signal discrete-time signal
Discrete-time signals: quantization • B-bit quantization: • the quantization error can only take on values between and • hence can be considered as a random noise signal with range • the signal-to-noise ratio (SNR) of the B-bit quantizer can then be defined as the ratio of the signal range and the quantization noise range : = the “6dB per bit” rule
Discrete-time signals: quantization • oversampling: • it is possible to make a trade-off between sampling rate and quantization noise • using a ‘coarse’ quantizer may be compensated by sampling at a higher rate = oversampling • e.g. an increasing number of audio recordings is done at a sampling rate of 96 kHz (while ) • noise shaping: • the quantization noise is typically assumed to be white • the noise spectrum may be altered to decrease its disturbing effect = noise shaping • e.g. psycho-acoustic noise shaping in audio quantizing
Discrete-time signals: reconstruction Analog world Digital world Analog world Digital-to- analog conversion Analog-to- digital conversion 0110100101 1001100010 DSP Analog IN Digital IN Digital OUT Analog OUT reconstruction
amplitude amplitude discrete time [k] continuous time (t) Discrete-time signals: reconstruction • reconstructor: • ‘fill the gaps’ between adjacent samples • e.g. staircase reconstructor: discrete-time/digital signal reconstructed analog signal
magnitude magnitude magnitude magnitude frequency frequency frequency frequency Discrete-time signals: reconstruction • ideal reconstructor: • ideal (rectangular) low-pass filter • no distortion • staircase reconstructor: • sync-like low-pass filter • with sidelobes • distortion due to • spurious high • frequencies
Discrete-time signals: reconstruction • anti-image postfilter: • low-pass filter to remove spurious high frequency components due to imperfect reconstruction • comparable to the anti-aliasing prefilter
Analog IN Analog OUT x(t) y(t) xp(t) x[k] xQ[k] y[k] yR(t) anti-aliasing prefilter anti-image postfilter DSP sampler quantizer reconstructor Digital IN Digital OUT Discrete-time signals: conclusion DSP system block scheme:
Les 1: Inleiding 1 • Introduction motivation, examples • Discrete-time signals sampling, quantization, reconstruction • Discrete-time systems LTI, impulse response, FIR/IIR, causality & stability, convolution & filtering, …
Discrete-time systems: overview • Introduction: • discrete-time systems • I/O behaviour • LTI systems: • linear time-invariant systems • impulse response • FIR/IIR • causality • stability • Convolution: • direct form • matrix form
x(t) y(t) xp(t) x[k] xQ[k] y[k] yR(t) anti-aliasing prefilter anti-image postfilter DSP sampler quantizer reconstructor Discrete-time systems: introduction • discrete-time systems: • any system implemented on a digital signal processor: • discrete-time model of continuous-time system, e.g. • wireless channel in mobile communications • twisted pair telephone line • acoustic echo channel between loudspeaker and microphone • …
system Discrete-time systems: introduction • input/output (I/O) behaviour: • mapping of input sequence on output sequence: • the output signal is a function of the input signal: input output
system Discrete-time systems: LTI systems • Linear time-invariant (LTI) systems: • linearity: • time-invariance: input output
amplitude amplitude 1 1 0 time 0 time Discrete-time systems: LTI systems • Impulse response: • LTI systems are characterized uniquely by their impulse response = the system output in response to a unit impulse input signal • the impulse response length – 1 is equal to the order of the system
amplitude 1 1 1 1 0 time 0 0 0 1 1 1 1 0 time 0 0 0 Discrete-time systems: LTI systems • Impulse response: • if the impulse response is known, the system response to an arbitrary input signal can be calculated = + + = + +
Discrete-time systems: LTI systems • FIR/IIR: • FIR: finite impulse response • IIR: infinite impulse response amplitude 1 time 0 amplitude 1 time 0
Discrete-time systems: LTI systems • Causality: • a causal system has an impulse response that is zero for all negative time indices • a non-causal system has an impulse response that has some non-zero coefficients on the negative time axis, i.e. the system output depends on future input values amplitude amplitude 1 1 0 time 0 time