340 likes | 636 Views
Cubic systems. Paul Sundaram University of Puerto Rico at Mayaguez. Review. Seven crystal systems Fourteen Bravais lattices Cubic and Hexagonal systems: 90% of all metals have a cubic or hexagonal structure. Cubic system characteristics. Unit cell a=b=c, a = b = g =90˚
E N D
Cubic systems Paul Sundaram University of Puerto Rico at Mayaguez
Review • Seven crystal systems • Fourteen Bravais lattices • Cubic and Hexagonal systems: 90% of all metals have a cubic or hexagonal structure
Cubic system characteristics • Unit cell a=b=c, a= b = g =90˚ • Face diagonal and body diagonal • Number of atoms per unit cell • Coordination number:number of nearest neighbor atoms • Close-packed structures • Atomic Packing Factor (APF) APF=(vol.of atoms in unit cell)/(vol. of unit cell) • Atom positions, crystallographic directions and crystallographic planes (Miller indices) • Planar atomic density & linear atomic density
Some concepts • Number of atoms per unit cell • Corner atom = 1/8 per unit cell • Body centered atom = 1 • Face centered atom = 1/2 Body diagonal= Face diagonal=
Face centered cubic *Highest packing possible in real structures
Atomic Positions Z (1/2,1/2,1) (0,1,1) (0,0,1) (1/2,1/2,1/2) (1/2,0,1/2) Y (0,0,0) X
Crystallographic directions Concept of a vector & components R R cos(90-f) f R cos(f)
Components X:a cos 90=0 Y:a cos 90=0 Z:a cos 0=a Miller index:[001] Examples Components X:a cos 90=0 Y:a cos 0=a Z:a cos 90=0 Miller index:[010] Components X:a cos 0=a Y:a cos 90=0 Z:a cos 90=0 Miller index:[100] Components X:a cos 90=0 Y:a cos 0=a Z:a cos 90=0 Miller index:[010] Family <100> <010> <001>
Components X: 0 Y: a Z: a Miller index:[011] Examples Components X: a Y: 0 Z: 1 Miller index:[101] Components X: a Y: a Z: 0 Miller index:[110]
Components X: 0 Y: -a Z: -a Miller index:[0 1 1] Examples Components X: -a Y: 0 Z: -a Miller index:[1 0 1] Components X: -a Y: -a Z: 0 Miller index:[1 1 0] Family <110> <011> <101>
Examples Components X: -a Y: -a Z: -a Miller index:[111] Components X: a Y: a Z: a Miller index:[111] Family <111>
Crystallographic planes 1.Intersections with X,Y,Z axes 1 2. Take the inverse 1/ 1/ 1/1 Miller index(0 0 1) Z How to determine indices of plane 1.Intersections with X,Y,Z axes 1 2. Take the inverse 1/1 1/ 1/ Miller index(1 0 0) Y X 1.Intersections with X,Y,Z axes 1 2. Take the inverse 1/ 1/1 1/ Miller index(0 1 0) Family {100}
Example Z How to determine indices of plane 1.Intersections with X,Y,Z axes 1 1 2. Take the inverse 1/1 1/1 1/ Miller index(1 1 0) Y X Family {110}
Example Z How to determine indices of plane 1.Intersections with X,Y,Z axes 1 1 1 2. Take the inverse 1/1 1/1 1/1 Miller index(1 1 1) Y X Family {111}
Examples Components X: 1/2 Y: 1/2 Z: 1 [1/2 1/2 1] [112] Components X: -1 Y: 1 Z: 1/2 [-1 1 1/2] [2 2 1] Components X: -1 Y: -1/2 Z: 1/2 [-1 -1/2 1/2] [2 1 1]
Examples Intersections -1,-1,1/2 Inverse -1 -1 2 (1 1 2) Intersections 1/2,1,1/2 Inverse 2 1 2 (212) Intersections 1/6,-1/2,1/3 Inverse 6 -2 3 (6 2 3) Intersections -1/2,1/2,1 Inverse -2 2 1 (2 2 1)