600 likes | 733 Views
Linking Ⅱ. Outline. Static linking Symbols & Symbol Table Relocation Executable Object Files Loading Suggested reading: 7.3~7.5, 7.7~7.9. Figure 7.1 P541. Example P542. unix> gcc -O2 -g -o p main.c swap.c cpp [args] main.c /tmp/main.i
E N D
Outline • Static linking • Symbols & Symbol Table • Relocation • Executable Object Files • Loading • Suggested reading: 7.3~7.5, 7.7~7.9
Example P542 unix> gcc -O2 -g -o p main.c swap.c cpp [args] main.c /tmp/main.i cc1 /tmp/main.i main.c -O2 [args] -o /tmp/main.s as [args] -o /tmp/main.o /tmp/main.s <similar process for swap.c> ld -o p [system obj files] /tmp/main.o /tmp/swap.o unix>
Object file • Object file • Various code and data sections • Instructions are in one section • Initialized global variables are in one section • Uninitialized global variables are in one section
ELF header Program header table (required for executables) .text section .data section .bss section .symtab .rel.txt .rel.data .debug .line .strtab Section header table (required for relocatables) ELF object file format Figure 7.3 P544
Object files • Relocatable object file • Contain binary code and data in a form that can be combined with other relocatable object files to create an executable file • Executable object file • Contains binary code and data in a form that can be copied directly into memory and executed
Object files • Shared object file • A special type of relocatable object file that can be loaded into memory and linked dynamically, at either load time or run time
Static linking • Input • A relocatable object files and command line arguments • Output • Fully linked executable object file that can be loaded and run
Static linking • Symbol resolution • resolves external references. • external reference: reference to a symbol defined in another object file
Static linking • Relocation • relocates symbols from their relative locations in the .o files to new absolute positions in the executable. • updates all references to these symbols to reflect their new positions. • references can be in either code or data • code: a(); /* ref to symbol a */ • data: int *xp=&x; /* ref to symbol x */
Executable and Linkable Format (ELF) • Standard binary format for object files • Derives from AT&T System V Unix • later adopted by BSD Unix variants and Linux • One unified format for relocatable object files (.o), executable object files, and shared object files (.so) • generic name: ELF binaries • Better support for shared libraries than old a.out formats.
ELF header Program header table (required for executables) .text section .data section .bss section .symtab .rel.txt .rel.data .debug .line .strtab Section header table (required for relocatables) EFI object file format Figure 7.3 P544
EFI object file format • Elf header • magic number, type (.o, exec, .so), machine, byte ordering, etc. • Program header table • page size, virtual addresses for memory segments (sections), segment sizes.
EFI object file format • .text section • code • .data section • initialized (static) data • .bss section • uninitialized (static) data • “Block Started by Symbol” • “Better Save Space” • has section header but occupies no space
EFI object file format • .symtab section • symbol table • procedure and static variable names • section names and locations • .rel.text section • relocation info for .text section • addresses of instructions that will need to be modified in the executable • instructions for modifying.
EFI object file format • .rel.data section • relocation info for .data section • addresses of pointer data that will need to be modified in the merged executable • .debug section • debugging symbol table, local variables and typedefs, global variables, original C source file (gcc -g)
EFI object file format • .line: • Mapping between line numbers in the original C source program and machine code instructions in the .text section. • .strtab: • A string table for the symbol tables and for the section names.
Symbols • Three kinds of symbols • 1) Defined global symbols • Defined by module m and can be referenced by other modules • Nonstatic C functions • Global variables that are defined without the C static attribute • 2) Referenced global symbols • Referenced by module m but defined by some other module • C functions and variables that are defined in other modules • 3) Local symbols • Defined and referenced exclusively by module m. • C functions and global variables with static attribute
Symbols • Three kinds of symbols • 1) Defined global symbols • Defined by module m and can be referenced by other modules • Nonstatic C functions • Global variables that are defined without the C static attribute
Symbols • Three kinds of symbols • 2) Referenced global symbols • Referenced by module m but defined by some other module • C functions and variables that are defined in other modules • 3) Local symbols • Defined and referenced exclusively by module m. • C functions and global variables with static attribute
Symbol Tables • Each relocatable object module has a symbol table • A symbol table contains information about the symbols that are defined and referenced by the module
Symbol Tables • Local nonstatic program variables • does not contain in the symbol table in .symbol • Local static procedure variables • Are not managed on the stack • Be allocated in .data or .bss
ELF header Program header table (required for executables) .text section .data section .bss section .symtab .rel.txt .rel.data .debug .line .strtab Section header table (required for relocatables) ELF object file format Figure 7.3 P544
Examples • int f() • { • static int x=1 ; • return x; • } • int g() • { • static int x = 1; • return x ; • } • x.1 and x.2 are allocated in .data
Symbol Tables • Compiler exports symbols in .s file • Assembler builds symbol tables using exported symbols • An ELF symbol table is contained in .symtab section • Symbol table contains an array of entries
ELF Symbol Tables P547 • typedef struct { • int name ; /* string table offset */ • int value ; /* section offset, or VM address */ • int size ; /* object size in bytes */ • char type:4 , /* data, func, section, or src file name */ • binding:4 ; /* local or global */ • char reserved ;/* unused */ • char section ; /* section header index, ABS, UNDEF, */ • /* or COMMON */ • } • ABS, UNDEF, COMMON
ELF Symbol Tables P547 Num: Value Size Type Bind Ot Ndx Name 8: 0 8 OBJECT GLOBAL 0 3 buf 9: 0 17 FUNC GLOBAL 0 1 main 10: 0 0 NOTYPE GLOBAL 0 UND swap Num: Value Size Type Bind Ot Ndx Name 8: 0 4 OBJECT GLOBAL 0 3 bufp0 9: 0 0 NOTYPE GLOBAL 0 UND buf 10: 0 39 FUNC GLOBAL 0 1 swap 11: 4 4 OBJECT GLOBAL 0 COM bufp1 alignment
Symbol Resolution P549 • void foo(void) • int main() • { • foo() ; • return 0 ; • } Unix> gcc –Wall –O2 –o linkerror linkerror.c /tmp/ccSz5uti.o: In function ‘main’: /tmp/ccSz5uti.o (.text+0x7): undefined reference to ‘foo’ collect2: ld return 1 exit status
7.6.3 How Linkers Use Static Libraries to Resolve References
Relocation • Relocation • Merge the input modules • Assign runtime address to each symbol • Two steps • Relocating sections and symbol definitions • Relocating symbol references within sections
Relocation • For each reference to an object with unknown location • Assembler generates a relocation entry • Relocation entries for code are placed in .rel.text • Relocation entries for data are placed in .rel.data
Relocation • Relocation Entry typedef struct { int offset ; int symbol:24, type:8 ; } Elf32_Rel ; Figure 7.8 P558
Relocation P5591) Recolating PC-relative References • e8 fc ff ff ff call 7<main+0x7> swap(); There is a relocation entry in rel.txt offset symbol type 7 swap R_386_PC32
Relocation 2) Relocating Absolute References int *bufp0 = &buf[0] ; 00000000 <bufp0>: 0: 00 00 00 00 There is a relocation entry in rel.data offset symbol type 0 buf R_386_32
Relocation • For each reference to an object with unknown location • Assembler generates a relocation entry • Relocation entries for code are placed in .rel.text • Relocation entries for data are placed in .rel.data
Relocation P5591) Relocating PC-relative References • e8 fc ff ff ff call 7<main+0x7> swap(); 7: R_386_PC32 swap relocation entry r.offest = 0x7 r.symbol = swap r.type = R_386_PC32 ADDR(main)=ADDR(.text) = 0x80483b4 ADDR(swap)=0x80483c8 refaddr = ADDR(main)+r.offset = 0x80483bb ADDR(r.symbol)=ADDR(swap)=0x80483c8 *refptr = (unsigned) (ADDR(r.symbol) + *refptr – refaddr = (unsigned) (0x80483c8 + (-4) – 0x80483bb) = (unsigned) 0x9
Relocation int *bufp0 = &buf[0] ; 00000000 <bufp0>: 0: 00 00 00 00 int *bufp0 = &buf[0]; 0: R_386_32 buf relocation entry ADDR(r.symbol) = ADDR(buf) = 0x8049454 *refptr = (unsigned) (ADDR(r.symbol)+ *refptr) = (unsigned) (0x8049454) 0804945c <bufp0>: 0804945c: 54 94 04 08
Relocation • foreach section s { • foreach relocation entry r { • refptr = s + r.offset ; /* ptr to reference to be relocated */ • /* relocate a PC-relative reference */ • if (r.type == R_386_PC32) { • refaddr = ADDR(s) + r.offset ; /* ref’s runtime address */ • *refptr = (unsigned) (ADDR(r.symbol) + *refptr –refaddr) ; • } • /* relocate an absolute reference */ • if ( r.type == R_386_32 ) • *refptr = (unsigned) (ADDR(r.symbol) + *refptr) ; • } • } Figure 7.9 P559
Relocation • 080483b4<main>: • 08483b4: 55 push %ebp • 08483b5: 89 e5 mov %esp, %ebp • 08483b7: 83 ec 08 sub $0x8, %esp • 08483ba: e8 09 00 00 00 call 80483c8 <swap> • 08483bf: 31 c0 xor %eax, %eax • 08483c1: 89 ec mov %ebp, %esp • 08483c3: 5d pop %ebp • 08483c4: c3 ret • 08483c5: 90 nop • 08483c6: 90 nop • 08483c7: 90 nop
Relocation • 080483c8<swap>: • 80483c8: 55 push %ebp • 80483c9: 8b 15 5c 94 04 08 mov 0x804945c, %edx get *bufp0 • 80483cf: a1 58 94 04 08 mov 0x8049458, %edx get buf[1] • 80483d4: 89 e5 mov %esp, %ebp • 80483d6: c7 05 48 85 04 08 58 movl $0x8049458, 0x8049548 • 80483dd: 94 04 08 bufp1 = &buf[1] • 80483e0: 89 ec mov %ebp, %esp • 80483e2: 8b 0a mov (%edx), %ecx • 80483e4: 80 02 mov %eax, (%edx) • 80483e6: a1 48 95 04 08 mov 0x8049548, %eax • 80483eb: 89 08 mov %ecx, (%eax) • 80483ed: 5d pop %ebp • 80483ee: c3 ret Figure 7.10 (a) P562