1 / 35

I am thanks full to my friends Tur Ali Sina Khan, Daniyal Siddiqui, Muhammad Umar Yasin,

I am thanks full to my friends Tur Ali Sina Khan, Daniyal Siddiqui, Muhammad Umar Yasin, Syed Wajahat Ali, Faraz Ahmad Bhatti, Ibraheem Ali, Bilal Aziz Rajput, Saad Ahmad Sheikh, Bilal Khan, Muddasir Akram Arain, Muhammad Haris Latif and Salman Rasheed.

sinead
Download Presentation

I am thanks full to my friends Tur Ali Sina Khan, Daniyal Siddiqui, Muhammad Umar Yasin,

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. I am thanks full to my friends • Tur Ali Sina Khan, • Daniyal Siddiqui, • Muhammad Umar Yasin, • Syed Wajahat Ali, • Faraz Ahmad Bhatti, • Ibraheem Ali, • Bilal Aziz Rajput, • Saad Ahmad Sheikh, • Bilal Khan, • Muddasir Akram Arain, • Muhammad Haris Latif and Salman Rasheed. Which helped me to making this presentation good and correcting all mistakes.

  2. History of Multisim.? Multisim was originally called Electronics Workbench and created by a company called Interactive Image Technology. At the time it was mainly used as an educational tool to teach electronic technician and electronic engineering programs in colleges and universities. National Instruments has maintained this educational legacy, with a specific version of Multisim with features developed for teaching electronics. In 1999, Multisim was integrated with Ultiboard after the original company merged with Ultimate Technology , a PCB layout software company. In 2005, Interactive Image Technologies was acquired by National Instruments Electronic Workbench group and Multisim was renamed to NI Multisim.

  3. What is Electronic Workbench/ Multisim.? Electronics Workbench/Multisim are simulation programs for educators and engineers that can model the behavior of analog / digital circuits and provide a means of analyzing them in a safe and efficient manner. Benefits of Multisim: • Provides real-life experience not readily available due to lack of resources. • Costs less than the physical equipment that’s why it motivates the learner. • Experiment in a safe environment.

  4. Limitation of Multisim • Simulation can not really substitute for real – life practice at handling components (e.g. soldering) • Cost (personal copy) • Lack of technical support User Friendly: • Quick access to the most commonly used tools. • Components are well organized and easy to find. • Simple procedures in developing circuits.

  5. Multisim User Friendly Interface Standard Tool Bar Menu Bar Main Tool Bar Simulation Button/Bar Components Tool Box Instrumentation Tool Box Work Window

  6. Toolbars • Multisim has movable toolbars located at the top and side of the screen. • The following slides identify the most commonly used toolbars. View Toolbar Full Screen, Zoom In, Zoom Out etc. Standard Toolbar New File, Open File, Save File, Print etc.

  7. Simulation Run Simulation, Stop Simulation, Pause Simulation , Step In etc. Components Toolbar Sources, Basics Components, Diodes, Transistors, Analogue, Indicators, RF and MCU etc.

  8. Main Toolbar Show/Hide Spice net list viewer, Breadboard viewer, Design toolbox viewer, GrapherAnalyzer, Create Components etc.

  9. Instrumentations Toolbar. Digital Multimeter Function Generator Watt Meter 2 Channel Oscilloscope Word Generator Logic Analyzer

  10. Draw a Simple NAND GATE circuit. • To place components on the window, you can: • Click on the component toolbar, then browse for the part. • Click Place on the menu bar, select components, then browse for the part

  11. First Place Power Source & Ground. Now Select DC Power Source from there respective families (source) and click OK...

  12. Next, we need to add a Ground. The Select Component window automatically opens after the first component is placed, so all you need to do is click Ground then click OK. If your component window did not automatically open, click the Place Source button to reopen it. Select Ground & click OK….

  13. Next, we will place Transistor from Transistor Menu. Under Group, click the drop-down arrow and click Transistors.

  14. Choose the Required Transistor (nPn & PnP) From Transistor Families. Select BJT_NPN then Search BC547 & Click OK place it on work place… Place 3 times the same transistors on work window.

  15. After Placement of these components the work window look like this. Now we can repeat the part placement to place a switches and resistors. See if you can find the switches in the Basic Group.

  16. Place a switch. Choose the switch labeled SPST for single pole, double throw. Then place another switch like this.

  17. Place a resistor. Choose the 1K value resistor from the resistors sheet & click OK... Another resistor of value 4.7K also place by same method.

  18. We have placed all of the components that we need for now. For close Components Box Click Close Button.

  19. Parts can be moved. Make sure that the component has a Bar box around it. Arrange the components to match the above configuration.

  20. According to your circuit designing, you can rotate, Flip vertical or horizontal and change setting (of some components like switches) etc. This is done by right click on selected component then menu will appear.

  21. If you want to change the value of the components like (Sources, resistor, capacitor etc.). Double-click on that component a dialog box will appear from where you can change your values. Example: you want to change the resistance value double click on it. Enter your new value here

  22. To begin wiring, how over the cursor over a part terminal (end pin). Notice that the cursor changes shape to indicate that you are starting a wire. Wiring the Components Cursor shape changes, showing that a wire is beginning on the ground symbol.

  23. Click once. Now you can start the wire. To end the wire, click on another terminal. Circuit window after connection between Vcc & Resistor R1.

  24. Click on the top of the source. Move the cursor to the right terminal of resistor R2 and click again. This should draw a wire connecting the parts. Continue wiring the circuit until you have a complete circuit. After completing the wiring you must check it the connections is correct, if any mistake is found you correct it and simulate the circuit. Continue Wiring

  25. 11ES46 11ES104 Multisim File Format. Now the circuit is complete. We will start the simulation by using the Play button.

  26. 11ES46 11ES104 Click here to start the simulation. Multisim File Format.

  27. Analyzing Results.

  28. Deg. Probe is Glowing.

  29. Deg. Probe is Glowing.

  30. Dig. Probe is Glowing.

  31. Hence the circuit design is correct & it proves all the NAND gate results. Assignment… (submit soft and hard copy) Design a CMOS NOR gate circuit and simulate it. Also proves all the NOR gate results.

  32. Analyzing of NAND Gate by Digital Instruments For digitally analyzing of NAND gate we replace the switches and sources by WORD GENERATOR.

  33. Results Analyze: 0 0 1 1 0 0 1 1 0 1 1 1

  34. THANKS YOU ALL THANKS YOU ALL SORRY FOR ANY MISTAKE.

More Related