1 / 41

Health Physics

Health Physics. 1b: Dosimetric Quantities (and terms). Activity, A p. Definition: A = dN / dt =  p x N

siran
Download Presentation

Health Physics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Health Physics 1b:Dosimetric Quantities (and terms)

  2. Activity, Ap Definition: A = dN / dt = p x N where N is the number of radioactive atoms present at time t, dN the expectation value of the number of nuclear transitions in time interval dt, and p the physical transformation constant (decay constant). Units: In MKS system (SI) 1 Becquerel = 1 s-1 (Bq) and its multiples kBq, MBq, GBq etc. 1 Ci = 3.7 x 1010 Bq 1mCi = 37 MBq N.B.: 1 Ci is historical unit, equal to activity of 1 g of radium.

  3. Physical Half-Life, T1/2 p dN / dt = p x N N(t) = N(o) exp (- p t ) physical transformation constant, p p = ln2 / T1/2p N(t) = N(o) exp (-ln2 t / T1/2 p)

  4. Physical Half-Life Physical Half-Life is the time it takes for 1/2 of the atoms of a particular radio-active element to undergo radioactive transformation.

  5. Biological Half-Life, T1/2b Biological Half-Life is the time it takes for 1/2 of the constituents (atoms, molecules, etc.) of a compartment of a living organism to leave this compartment.

  6. Effective Half-Life, T1/2 e dN / dt = (p+ b ) x N = e x N N(t) = N(o) exp (- e t ) Effective transformation constant, e : e = p+ b 1/T1/2 e= 1/T1/2 p+ 1/T1/2 b

  7. Specific Activity, As Definition: Activity per unit mass. As = A / m = p N / m = p NA / mmole NA = 6.02 x 1023 mmolein g Units: Bq / g or Ci / g

  8. Linear Attenuation Coefficient,  Definition: fraction of photons that interact with medium per unit thick-ness of attenuator:  = - (dN / N) / dx Units: cm-1

  9. Linear Attenuation Coefficient,  continued: N(x) = No exp (- x ) Thus, exp (- x ) is probability that a photon traverses thickness x of an absorber without interacting with it.

  10. Half Value Layer (HVL) Definition: The thickness of a material that attenuates a photon beam by 50% is called the HVL. N.B.: HVL = ln2 /  Units: mm, cm, m etc.

  11. Tenth Value Layer (TVL) Definition: The thickness of a material that attenuates a photon beam by a factor of A=10 is called the TVL. Number of TVLs ’needed’ = log10 A (remember ‘build-up’ factor!) Units: mm, cm, m etc.

  12. Mass Attenuation Coefficient, Energy Absorption CoefficientStopping Power Definitions and Units: see Physics course.

  13. Average Ion-Pair Energy, W Definition: average energy (W) required to produce an ion-pair in a medium traversed by electrons. In air:W = 33.97 eV / ion pair Units: eV / ion pair or Joule / C

  14. Kinetic Energy Released in the Medium, or Kerma, K Definition: K = dEtr/ dm where dEtr is the kinetic energy trans-ferred from photons (or neutrons) to charged particles in mass dm. Units: SI unit J kg-1 ;special unit Gy

  15. Exposure, X Definition: X = dQ / dm where dQ is the absolute value of total charge of ions of one sign produced in dry air when all electrons liberated by photons in an air volume element of mass dm are stopped in the air. Units:

  16. Exposure, X continued... X only defined for photons with E  3MeV Units: SI unit is C / kg. Historical unit is the Roentgen, R. (1R = 1esu in 1 cm3of air at STP). 1R = 2.58 x 10- 4 C / kg.

  17. Exposure Rate Constant, (Specific Gamma Ray Constant) Definition: is exposure rate, X/t, in R/h (due to photons of energy > )at distance d=1m from a source with activity A=1Ci. Or: X / t =  A / d2 Units: R m2 h-1 Ci-1

  18. Absorbed Dose, D Definition: D = dEabs / dm where dEabs is the mean energy imparted by ionizing radiation to a mass element dm. Units: SI unit is the Gray, 1Gy = 1J/kg Historical unit is the rad, 1 rad = 1 cGy

  19. Radiation Weighting Factor, wR(Quality Factor, Q) 1 Gy of alpha particles and 1Gy of photons have different effects on tissue. Q, wR , LET and RBEare closely related.

  20. Radiation Weighting Factors, wR 5 Radiation type Energy E wR (MeV) --------------------------------------------------------------------------------------------------------- photons all energies 1 ------------------------------------------------------------------------------------------------------------------------------------------------ electrons and muons all energies 1 ------------------------------------------------------------------------------------------------------------------------------------------------neutrons E < 0.01 5 0.01 ≤ E < 0.1 10 0.1 ≤ E < 2 20 2 ≤ E < 20 10 20 ≤ E 5 -------------------------------------------------------------------------------------------protons (other than recoil 20 ≤ E 5 protons) -------------------------------------------------------------------------------------------alpha particles, heavy ions all energies 20 ------------------------------------------------------------------------------------------- Table A-2 in ICRP 60

  21. Relative Biological Effectiveness, RBE Definition: RBE = [Dose from standard radiation (200 keV Xp rays) to produce a given biol. effect] / [dose from test radiation to produce same effect]. Units: RBE is dimensionless

  22. Linear Energy Transfer, LETor `restricted` Stopping Power LET characterizes the rate of energy loss of charged particles in an attenuating medium. Units: keV / m

  23. Equivalent Dose, H Definition: HT= R wR DT, R Use of radiation weighting factors wR normalizes risks for different types of radiation (, , , p, n …) to tissue T. Units: SI unit is the Sievert, 1Sv = 1J/kg Historical unit is the rem, 1 rem = 1cSv

  24. Effective Dose, E Definition: E= T wT HT with T wT = 1 Use of tissue weighting factors wT normalizes cancer risk for different tissues (→ partial exposure). Units: SI unit is the Sievert, 1Sv = 1J/kg Historical unit is the rem, 1 rem = 1cSv

  25. Tissue Weighting Factors, wT Tissue wT Tissue wT gonads 0.20 liver 0.05 bone marrow 0.12 oesophagus 0.05 (red) colon 0.12 thyroid 0.05 lung 0.12 bone surface 0.01 stomach 0.12 skin 0.01 bladder 0.05 remainder 0.05 breast 0.05 Table A-3 in ICRP 60

  26. Tissue Weighting Factors, wT continued… Interpretation 1: If a whole body dose, D, implies a 1% cancer risk of any kind, then the risk of cancer to the bladder is 0.05%.

  27. Tissue Weighting Factors, wT continued… Interpretation 2: an effective dose of 5rem to the bladder alone carries the same risk of cancer to the bladder as a 100rem uniform whole-body equivalent dose.

  28. Committed Equivalent Dose, H() Definition: HT () = toto+ (dHT/dt) dt for chronic dose to tissue T, over time , starting at time to. If not specified, then =50 y for adults and 70 y for children. Units: Sv, rem

  29. Committed Effective Dose, E() Definition: E() = T wTHT() Units: SI unit is the Sievert; 1Sv = 1J/kg

  30. Collective Equivalent Dose, ST Definition: S T = i ĤT,iNi Units: The SI unit is the man-Sievert

  31. Collective Effective Dose, S Definition: S = i ÊiNi Units: The SI unit is the man-Sievert

  32. Genetically Significant Dose, GSD Definition: GSD = t DtÑtPt /t Nt Pt Units: SI unit is the Sievert; 1Sv = 1J/kg

  33. Annual Limit on Intake, ALI Definition: ALI refers to that quantity of a radio-nuclide which, when taken into the body (reference man, ICRP 23) per one year, will deliver to that person an effective dose equal to the regulatory limit (20mSv/y for NEWs) over the 50 years (or for each year) of occupational exposure. Units: Bq

  34. Annual Limit on Intake, ALI continued: ALI values for NEWs for most radionuclides and various routes of entering the body may be found in ICRP Publication 61. Units: Bq

  35. Exemption Quantity, EQ « Definition » : A regulatory quantity assigned to each radionuclide by the CNSC for licencing purposes. As an example, no CNSC-licence is required for the handling of less than 1 EQ of a given radionuclide. Units: Bq (kBq, MBq, GBq)

  36. Exemption Quantity, EQ continued: A radiation warning label (RAYONNEMENT- DANGER- RADIATION) has to be posted in points of access to areas where more than 100 EQs of a given radionuclide are stored or handled. A special CNSC permission is required for projects involving more than 10’000 EQs of a given radionuclide.

  37. Radiation Monitoring Area monitoring (portable or fixed rad. Monitors) Technique monitoring (experimental procedures) Personnel monitoring Monitoring of internal radioactivity (whole body counter, bioassay)

  38. Skin Dose, Depth Dose Personal Dose Equivalent, Hp(d): d: depth below specific point on body in soft tissue (10mm for penetrating radiation; 0.07mm for weakly penetrating radiation) H10 : Depth (body) dose H07 : Skin (surface) dose Units: the SI unit is the Sievert; 1 Sv = 1J/kg

  39. Occupancy Factor, T T is a modifying factor that enters into personal radiation dose estimations: D = DT=1 x T Units: T is dimensionless, T1

  40. Occupancy Factor, T Examples of Occupancy Factors T=1 (full occ.) : offices, labs, wards T= 1/4 (partial occ.) : corridors, elevators T= 1/16 (occasional) : toilets, stairways From: NCRP-49, page 65.

  41. Psychological Hazard Do not underestimate! Effect from psychological factors (stress) might be more troublesome than real effect from radiation.

More Related