1.01k likes | 1.06k Views
Can an experiment distinguish between molecular configurations? Explore the negative and positive parity of light mesons and their JPC quantum numbers in the hadroproduction process. Understanding the meson spectrum and vector decays is crucial for detecting states and resonances. Analyze the shifting of masses in the vector multiplet and explore Breit-Wigner resonance states. Discover the complexities of scalar mesons and diquarks in the study of hadron states.
E N D
INT 15-60W November 2015 distinguishing molecules Michael Pennington Jefferson Lab
q q q q q 1 q ( i D - m ) q - F F = q 4 QCD q=u,d,s, c,b,t
q q g g
q q q q q q q g g
q q q q q q q q q q q g g
q q q q q q q q q q q q g q g
q q q q q q q q q q q g g Can experiment distinguish between these configurations ?
q q q du c uc
K1B f2 ` ‘ f0 K0* K2* K1A h1 f0 j r a2 f2 a0 f0 f1 h3 a1 b1 w
Light Meson Spectrum negative parity ` h isoscalar isovector 0-+1-- 2-+ 3-- 0++ 1++ 1+- 2++ 4++ positiveparity 2.5 2.0 1.5 Mass (GeV) j 1.0 w r h 0.5 p 0 JPC
Light Meson Spectrum negative parity ` h isoscalar isovector 0-+1-- 2-+ 3-- 0++ 1++ 1+- 2++ 4++ positiveparity 2.5 2.0 1.5 Mass (GeV) j 1.0 w r h 0.5 p 0 JPC
Meson spectrum 3-- 2++ 4++ 2-- 1++ 3++ 1-- 2++ 0++ 2-+ 1+- 3+- L=3 1-- 0-+ L=2 L=1 s1 s2 q S = 0, 1 L=0 L q JPC radial
Meson spectrum K*0 K0 K*+ K+ f 1-- r+ + - r- 0-+ w r0 0 K*- K- K*0 K0 s1 s2 q S = 0, 1 L q 0-+ 1-- L=0
Vector decays p 3 p 2 energy 0 j K* w r p K
Vector decays p 3 p 2 f KK K* w r p K energy 0
Vector multiplet - - PC J = 1 s1 s2 q L S = 1, L = 0 q ds us ss ud du uu ± dd su sd
shifting of masses shifting of masses Vector multiplet Vector multiplet Vector multiplet + KK s
shifting of masses Vector multiplet + KK s
analyticity & complex energy plane resonance pole E Im E Re E
Hadroproduction R M(K) GeV M1 g p M2 exchange N B
Hadroproduction M1 g p M2 exchange N B
Hadroproduction M1 g p M2 exchange N B
Hadroproduction M1 g p M2 exchange N B
Hadroproduction M1 g p M2 exchange N B
Hadroproduction M1 g p M2 exchange N B
Hadroproduction M1 g p M2 exchange N B
Hadroproduction M1 g p M2 exchange N B
Hadroproduction M1 g p M2 exchange N B
Hadroproduction M1 g p M2 exchange N B
+ - (770)
Meson spectrum 3-- 2++ 4++ 2-- 1++ 3++ 1-- 2++ 0++ 2-+ 1+- 3+- L=3 1-- 0-+ L=2 L=1 s1 s2 q S = 0, 1 L=0 L q 0++ radial
Scalar mesons f (500) 0
Scalar mesons 1 1 GeV
Scalar multiplet s1 s2 q L q { 1 GeV k S = 1, L = 1
Scalar mesons I = J = 0 pp pp f (500) 1 1 0 0 0 0.4 0.4 0.8 0.8 1.2 1.2 1.6 1.6 M ()(GeV) M ()(GeV)
Hadron States Breit-Wigner 1 M2 – s - iMG E E x s = E2
p p p p M(pp) GeV r F(s,J) = 3 f1(s) cosJ s = M2 (pp) -1 0 cos J 1
Breit-Wigner 1 merely an approximation valid in the region of the pole M2 – s - iMG 1 M2 (s) – s x s = E2
Scalar mesons I = J = 0 pp pp f (500) 1 1 0 0 0 0.4 0.4 0.8 0.8 1.2 1.2 1.6 1.6 M ()(GeV) M ()(GeV)
Into the complex plane E Im E Re E ER= 441 -i 272 MeV Caprini, Colangelo, & Leutwyler
, KK f0 (980) 1 0 0.4 0.8 1.2 1.6 M ()(GeV) CERN-Munich, ANL, BNL
, KK f0 (980) 1 0 0.4 0.8 1.2 1.6 M ()(GeV) J/ (, KK) f0 (980) CERN-Munich, ANL, BNL BES
J/ (, KK) , KK f0 (980) 1 0 0.4 0.8 1.2 1.6 M ()(GeV) BES f0 (980) CERN-Munich, ANL, BNL
Scalar multiplet s1 s2 q L q { 1 GeV k S = 1, L = 1
diquarks: color tetraquark Jaffe & Wilczek Scalar diquarks [ud][us][ds] [cd][cu][cs]
Scalar meson multiplets qq qqqq n = u,d Jaffe