1 / 31

Space weather effects of the solar wind on different regions of the magnetosphere

Belgian Institute for Space Aeronomy (BIRA-IASB) Institut d’Aéronomie Spatiale de Belgique (IASB) Belgisch Instituut voor Ruimte-Aeronomie (BIRA).

skyla
Download Presentation

Space weather effects of the solar wind on different regions of the magnetosphere

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Belgian Institute for Space Aeronomy (BIRA-IASB) Institut d’Aéronomie Spatiale de Belgique (IASB) Belgisch Instituut voor Ruimte-Aeronomie (BIRA) BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERO Spaceweathereffects of the solarwind on differentregions of the magnetosphere Viviane PIERRARD IAP Charm

  2. Kinetic models based on the solution of the evolution equation Solar wind Friction Diffusion 1. Vlasov (analytic) Pierrard et al., Sol. Phys., 2014 2. Fokker-Planck Pierrard et al., JGR, 2001 3. WPI kinetic Alfven waves Pierrard & Voitenko, Sol. Phys.2013 4. WPI Whistler turbulence Pierrard et al., Sol. Phys. 2011 Knudsen = mean free path/H Exosphere: Kn>>1 Vlasov equation Exobase: Kn=1 Solar wind escape: 1.1-5 Rs Barosphere: Kn<<1 Fokker-Planck Pierrard V., “Exploring the solar wind”, 221-240, Intech, ISBN 978-953-51-0339-4, 2012

  3. Velocity distribution functions observed in situ in the solar wind Electrons 1 AU WIND Protons 0.5 AU Helios Ions He O Ne 1 AU WIND core strahl halo B

  4. Kappa functions Ulysses electron distributions fitted with Kappa functions Results: <k> = 3.8 +/- 0.4 for v > 500 km/s (4878 observ.) <k> = 4.5 +/- 0.6 for v < 500 km/s (11479 observ.) Ions WIND: k=2.5 General in space plasmas Pierrard and Lazar, Sol. Phys., 287, 153-174, 10.1007/s11207-010-9640-2, 2010

  5. Solar wind kinetic model: profiles of the moments Kappa=2 Not classical heat flux Pierrard et al., Solar Phys., 2014 Maxwellian Pierrard, Space Sci. Rev., 172, 315, 2012

  6. Solar wind minor ions Kappa=5 for all species T=10000 K at the top of chromosphere Heating of the corona by velocity filtration Acceleration of the ions Pierrard, Space Sci. Rev., 172, 315, 2012

  7. Solar wind model SDO observations 29 May 2013 coronal holes directed to the Earth. ACE observations of velocity at 1 AU Pierrard & Pieters, ASP,167-172, 2014

  8. Model with collisions and whistler turbulence Bottom (collision-dominated): f(2 Rs,m>0,v) = maxwellian Top (collisionless conditions): f(14 Rs,m<0,v<ve) = f(14 Rs,m>0,v<ve) f(14 Rs,m<0,v>ve) = 0 Electron velocity distribution function Pierrard, Lazar & Schlickeiser, Sol. Phys. 287, 421, 2011

  9. Storms and substorms Geomagnetic activity indices (based on B at the surface of the Earth) Kp [0-9] 1939 13 stations (11N, 2S 44-60°) Dst1964 4 stations (eq) AE 1966 12 stations N (aur) PC 1991 1 station (pol)

  10. Corotating Interaction Regions CR2075 u B CR2075 CR2076 Dst Depends on u, B, q, n

  11. Auroral regions Current-voltage relationship FUV IMAGE Pierrard et al., J. Atmosph. Sol. Terr. Phys., 69 doi: 10.1016/j.jastp.2007.08.005, 2007

  12. Terrestrial magnetosphere

  13. Van Allen Radiation belts Energetic protons and electrons Electron flux in the 0.5-0.6 MeV at 820 km measured by EPT on PROBA-V Pierrard et al., Space Sci. Rev., doi: 10.1007/s11214-014-0097-8, 2014

  14. Van Allen Radiation belts internal: p+ (100 keV-500 MeV) external: p+ (<10 MeV) e- (10 keV-10 MeV)e- (10 keV-5 MeV) 4 Rt 10 Rt AP8 Max J(E>10 MeV) AE8 Max J(E >1 MeV) L (Re) L (Re)

  15. High flux variations Benck et al., SWSC, 3, doi: 10.1051/SWSC/2013024 , 2013

  16. Dynamic model of the radiation belts Dynamic model of the electron radiation belts based on CLUSTER/RAPID observations (2001-2012) www.spaceweather.eu Pierrard & Borremans, subm. SWSC, 2014

  17. Links Plasmasphere/radiation belts Plasmasphere: 1 eV Radiation belts: > 200 keV Pierrard and Benck, AIP, 1500, 216, 2012 (SAC-C) Darrouzet et al., JGR, 118, 4176-4188, 2013 (Cluster)

  18. Terrestrial plasmasphere and plasmapause position Web-based forecasting and nowcasting model on www.spaceweather.eu http://ccmc.gsfc.nasa.gov Ionosphere, GPS 9-6-2001/ 10-6-2001 Pierrard and Voiculescu, GRL 38, L12104, 2011

  19. Comparison with observations IMAGE (2000-2006): RPI and EUV He+ ions at 30.4 nm Before substorm 9 June 2001 8h00 After substorm 10 June 2001 7h00

  20. Terrestrial polar wind Input: n and T at 2000 km +++ e-www p+ … O+ Pierrard and Borremans, ASP 459, 2012

  21. Saturn and Jupiter Pierrard V., Planet. Space Sci., doi : 10.1016/j.pss.2009.04.011, 2009 Electron density in the exosphere of Jupiter Auroral oval and footprints on Jupiter

  22. Conclusions - CMEs and solar wind high speed streams cause geomagnetic storms and substorms - Variations measured by geomagnetic activity indices (Kp, Dst) - Auroral oval larger and wider - High flux variations in the outer electron Van Allen belt - High variability of the plasmapause position - Comparison with the magnetosphere of other planets - Kinetic models developed for space plasmas - Models provided on www.spaceweather.eu IASB-BIRA/STCE / IUAP CHARM

  23. Conclusions BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERO • CMEs and solar wind high speed streams cause geomagnetic substorms and storms • Variations measured by geomagnetic activity indices at the ground (Kp, Dst) • Auroral oval larger and wider • High flux variations in the outer electron Van Allen belt • High variability of the plasmapause position • Comparison with the magnetosphere of other planets • Kinetic models developed for space plasmas • Models provided on www.spaceweather.eu IASB-BIRA/STCE / IUAP CHARM

  24. The moments of f Number density [m-3] Particle flux [m-2 s-1] Bulk velocity [m s-1] Pressure [Pa] Temperature [K] Energy flux [Jm-2 s-1]

  25. Kappa distributions: theory and applications in space plasmas • Generation of Kappa in space plasmas: • turbulence and long-range properties of particle interactions in a plasma - plasma immersed in suprathermal radiation (Hasegawa et al., 1985) - randomwalkwith power law (Collier, 1993) - turbulent thermodynamicequilibrium (Treumann, 1999) - entropygeneralization in nonextensiveTsallisstatistics (Leubner, 2002) - resonant interactions withwhistlerwaves (Vocks and Mann, 2003) • Dispersion properties and stability of Kappa distributions • Vlasov-Maxwell kinetics. Dielectrictensor • The modified plasma dispersion function • Isotropic /Anisotropic Kappa distributions Pierrard and Lazar, Sol. Phys., 287, 153-174, 10.1007/s11207-010-9640-2, 2010

  26. Consequence 3. Solarwindacceleratedto high bulkvelocity due to the presence of suprathermalelectrons (Vlasov model) k=2 Maxwell Pierrard and Lemaire, JGR 101, 7923-7934, 1996 Pierrard, Space Sci. Rev., 172, 315-324, 2012

  27. Te model • Consequence: • Non classicalheat flux • Temperature inversion around 2 Rs • - Peak in electrontemperature at 2 Rs • - Corresponds to coronal brightness measurements obtained during solar eclipses • Heat flux • not given by the Spitzer-Harm expression • Spitzer-Harmheat flux assumed in fluidmodels • No need of additionalheating source to heat the corona or to accelerate the wind Te obs. polar Te obs. equator Qe model Qp model Classical heat flux Pierrard V., K. Borremans, K. Stegen and J. Lemaire, Solar Phys., doi: 10.1007/S11207-013-0320-x, 2014

  28. Introduction Solar wind Kinetic models Magnetosphere Geomagnetic activity indices Aurora Van Allen belts Plasmasphere-ionosphere Conclusions

More Related