360 likes | 623 Views
Belgian Institute for Space Aeronomy (BIRA-IASB) Institut d’Aéronomie Spatiale de Belgique (IASB) Belgisch Instituut voor Ruimte-Aeronomie (BIRA).
E N D
Belgian Institute for Space Aeronomy (BIRA-IASB) Institut d’Aéronomie Spatiale de Belgique (IASB) Belgisch Instituut voor Ruimte-Aeronomie (BIRA) BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERO Spaceweathereffects of the solarwind on differentregions of the magnetosphere Viviane PIERRARD IAP Charm
Kinetic models based on the solution of the evolution equation Solar wind Friction Diffusion 1. Vlasov (analytic) Pierrard et al., Sol. Phys., 2014 2. Fokker-Planck Pierrard et al., JGR, 2001 3. WPI kinetic Alfven waves Pierrard & Voitenko, Sol. Phys.2013 4. WPI Whistler turbulence Pierrard et al., Sol. Phys. 2011 Knudsen = mean free path/H Exosphere: Kn>>1 Vlasov equation Exobase: Kn=1 Solar wind escape: 1.1-5 Rs Barosphere: Kn<<1 Fokker-Planck Pierrard V., “Exploring the solar wind”, 221-240, Intech, ISBN 978-953-51-0339-4, 2012
Velocity distribution functions observed in situ in the solar wind Electrons 1 AU WIND Protons 0.5 AU Helios Ions He O Ne 1 AU WIND core strahl halo B
Kappa functions Ulysses electron distributions fitted with Kappa functions Results: <k> = 3.8 +/- 0.4 for v > 500 km/s (4878 observ.) <k> = 4.5 +/- 0.6 for v < 500 km/s (11479 observ.) Ions WIND: k=2.5 General in space plasmas Pierrard and Lazar, Sol. Phys., 287, 153-174, 10.1007/s11207-010-9640-2, 2010
Solar wind kinetic model: profiles of the moments Kappa=2 Not classical heat flux Pierrard et al., Solar Phys., 2014 Maxwellian Pierrard, Space Sci. Rev., 172, 315, 2012
Solar wind minor ions Kappa=5 for all species T=10000 K at the top of chromosphere Heating of the corona by velocity filtration Acceleration of the ions Pierrard, Space Sci. Rev., 172, 315, 2012
Solar wind model SDO observations 29 May 2013 coronal holes directed to the Earth. ACE observations of velocity at 1 AU Pierrard & Pieters, ASP,167-172, 2014
Model with collisions and whistler turbulence Bottom (collision-dominated): f(2 Rs,m>0,v) = maxwellian Top (collisionless conditions): f(14 Rs,m<0,v<ve) = f(14 Rs,m>0,v<ve) f(14 Rs,m<0,v>ve) = 0 Electron velocity distribution function Pierrard, Lazar & Schlickeiser, Sol. Phys. 287, 421, 2011
Storms and substorms Geomagnetic activity indices (based on B at the surface of the Earth) Kp [0-9] 1939 13 stations (11N, 2S 44-60°) Dst1964 4 stations (eq) AE 1966 12 stations N (aur) PC 1991 1 station (pol)
Corotating Interaction Regions CR2075 u B CR2075 CR2076 Dst Depends on u, B, q, n
Auroral regions Current-voltage relationship FUV IMAGE Pierrard et al., J. Atmosph. Sol. Terr. Phys., 69 doi: 10.1016/j.jastp.2007.08.005, 2007
Van Allen Radiation belts Energetic protons and electrons Electron flux in the 0.5-0.6 MeV at 820 km measured by EPT on PROBA-V Pierrard et al., Space Sci. Rev., doi: 10.1007/s11214-014-0097-8, 2014
Van Allen Radiation belts internal: p+ (100 keV-500 MeV) external: p+ (<10 MeV) e- (10 keV-10 MeV)e- (10 keV-5 MeV) 4 Rt 10 Rt AP8 Max J(E>10 MeV) AE8 Max J(E >1 MeV) L (Re) L (Re)
High flux variations Benck et al., SWSC, 3, doi: 10.1051/SWSC/2013024 , 2013
Dynamic model of the radiation belts Dynamic model of the electron radiation belts based on CLUSTER/RAPID observations (2001-2012) www.spaceweather.eu Pierrard & Borremans, subm. SWSC, 2014
Links Plasmasphere/radiation belts Plasmasphere: 1 eV Radiation belts: > 200 keV Pierrard and Benck, AIP, 1500, 216, 2012 (SAC-C) Darrouzet et al., JGR, 118, 4176-4188, 2013 (Cluster)
Terrestrial plasmasphere and plasmapause position Web-based forecasting and nowcasting model on www.spaceweather.eu http://ccmc.gsfc.nasa.gov Ionosphere, GPS 9-6-2001/ 10-6-2001 Pierrard and Voiculescu, GRL 38, L12104, 2011
Comparison with observations IMAGE (2000-2006): RPI and EUV He+ ions at 30.4 nm Before substorm 9 June 2001 8h00 After substorm 10 June 2001 7h00
Terrestrial polar wind Input: n and T at 2000 km +++ e-www p+ … O+ Pierrard and Borremans, ASP 459, 2012
Saturn and Jupiter Pierrard V., Planet. Space Sci., doi : 10.1016/j.pss.2009.04.011, 2009 Electron density in the exosphere of Jupiter Auroral oval and footprints on Jupiter
Conclusions - CMEs and solar wind high speed streams cause geomagnetic storms and substorms - Variations measured by geomagnetic activity indices (Kp, Dst) - Auroral oval larger and wider - High flux variations in the outer electron Van Allen belt - High variability of the plasmapause position - Comparison with the magnetosphere of other planets - Kinetic models developed for space plasmas - Models provided on www.spaceweather.eu IASB-BIRA/STCE / IUAP CHARM
Conclusions BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE OF SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERO • CMEs and solar wind high speed streams cause geomagnetic substorms and storms • Variations measured by geomagnetic activity indices at the ground (Kp, Dst) • Auroral oval larger and wider • High flux variations in the outer electron Van Allen belt • High variability of the plasmapause position • Comparison with the magnetosphere of other planets • Kinetic models developed for space plasmas • Models provided on www.spaceweather.eu IASB-BIRA/STCE / IUAP CHARM
The moments of f Number density [m-3] Particle flux [m-2 s-1] Bulk velocity [m s-1] Pressure [Pa] Temperature [K] Energy flux [Jm-2 s-1]
Kappa distributions: theory and applications in space plasmas • Generation of Kappa in space plasmas: • turbulence and long-range properties of particle interactions in a plasma - plasma immersed in suprathermal radiation (Hasegawa et al., 1985) - randomwalkwith power law (Collier, 1993) - turbulent thermodynamicequilibrium (Treumann, 1999) - entropygeneralization in nonextensiveTsallisstatistics (Leubner, 2002) - resonant interactions withwhistlerwaves (Vocks and Mann, 2003) • Dispersion properties and stability of Kappa distributions • Vlasov-Maxwell kinetics. Dielectrictensor • The modified plasma dispersion function • Isotropic /Anisotropic Kappa distributions Pierrard and Lazar, Sol. Phys., 287, 153-174, 10.1007/s11207-010-9640-2, 2010
Consequence 3. Solarwindacceleratedto high bulkvelocity due to the presence of suprathermalelectrons (Vlasov model) k=2 Maxwell Pierrard and Lemaire, JGR 101, 7923-7934, 1996 Pierrard, Space Sci. Rev., 172, 315-324, 2012
Te model • Consequence: • Non classicalheat flux • Temperature inversion around 2 Rs • - Peak in electrontemperature at 2 Rs • - Corresponds to coronal brightness measurements obtained during solar eclipses • Heat flux • not given by the Spitzer-Harm expression • Spitzer-Harmheat flux assumed in fluidmodels • No need of additionalheating source to heat the corona or to accelerate the wind Te obs. polar Te obs. equator Qe model Qp model Classical heat flux Pierrard V., K. Borremans, K. Stegen and J. Lemaire, Solar Phys., doi: 10.1007/S11207-013-0320-x, 2014
Introduction Solar wind Kinetic models Magnetosphere Geomagnetic activity indices Aurora Van Allen belts Plasmasphere-ionosphere Conclusions