190 likes | 348 Views
Strangeness Production @ COSY. ANKE. Proton Induced Strangeness Production on Protons and Nuclei Near Threshold Markus Büscher Forschungszentrum Jülich Germany. COSY-11. COSY-TOF. The Accelerator: COSY-Jülich. COSY ( Co oler Sy nchroton) at FZ-Jülich (Germany):
E N D
Strangeness Production @ COSY ANKE Proton Induced Strangeness Production on Protons and Nuclei Near Threshold Markus Büscher Forschungszentrum Jülich Germany COSY-11 COSY-TOF Markus Büscher, HYP2003
The Accelerator: COSY-Jülich COSY (Cooler Synchroton) at FZ-Jülich (Germany): • (polarized) p & d beams • phase-space cooling • electron & stochasting cooling • p = 0.30 – 3.65 GeV/c • pp pp X (mX 1.1 GeV/c2) • dd a X (mX 1.0 GeV/c2) • pp pK+ Y* (mY* 1.5 GeV/c2) • internal & external beams Markus Büscher, HYP2003
COSY vs. Other Accelerators Production Thresholds: p p p K+ LTp = 1.58 GeV p p p K+ S0 Tp = 1.79 GeV p p p K0 S+ Tp = 1.80 GeV p p p p K+ K-Tp= 2.50 GeV Some interesting reactions: • pp pK+Y (mY 1.5 GeV/c2) • pp pp a0/f0(980) • pA pK+X (Tp = 1.0...2.3 GeV) Several dedicated detection systems... Electron accelerators Hadron accelerators Markus Büscher, HYP2003
Cluster target drift chambers scintillator Detectors at COSY Detectors @ COSY ANKE, COSY-11: • circulating beam • thin internal targets • forward spectrometer (small acceptance) • magnetic spectrometer COSY-TOF: • extracted beam • small target (vertex) • nearly 4p coverage (no charge id) • non-magnetic MOMO (at BIG KARL) Markus Büscher, HYP2003
COSY-TOF: Detection Principle intermediate fiber hodoscope “Quirl“ • No magnetic field • Detection of charged ejectiles • Complete geometrical reconstruction of each event kinematical variables • Start detector optimized for track/vertex reconstruction • Additionally: TOF & DE • Trigger: charge 2 4 Fiber hodoscope Start scintillator Flight path for TOF measurement double-sided ring m-strip Markus Büscher, HYP2003
Strangeness Production … Initial- (ISI) and Final State Interactions (FSI): If (p,Y), (p,K), or (K,Y) travel along with each other, they interact and „distort“ spectra (observables): exploit this to study such interactions !! reactions close to threshold Example: (pL)-FSI (pL) scattering length NN NN X N Y K ISI Production FSI Markus Büscher, HYP2003
N* & FSI Exp. p-L FSI N*(1650) L-Hyperon Production p p p K+ L (COSY-TOF) Dalitz-plots: (analysis w/ theoretical model of A. Sibirtsev) • at 2.85 GeV/c (see Fig.) in addition to p-L FSI, a strong contribution of the N*(1650) nucleon resonance is needed • At higher energies, also the N*(1710) has to be included [FSI+N*(1650)] : N*(1710) ~ 1 N* K+ p L p p W. Schröder, Ph.D. thesis Uni Erlangen, to be published Markus Büscher, HYP2003
Lp Interaction p p p K+ L (COSY-11) Total cross section for pp p K+L • .........phase space • ____ p-K+ Coulomb repulsion and p-L strong FSI Dalitz-pot analysis: spin-averaged Lp-scattering length: a = - (2.0 ± 0.2) fm But: a and r are correlated Watson formula applicable? Spin dependence (as/at)? Theory can help ... ! J.T. Balewski et al., EPJ A2, 99 (1998) Markus Büscher, HYP2003
Lp Scattering Length • Data: • - Lp elastic scattering • (sel = ¼ ss + ¾ st) • - Bubble chamber • Fit: • - Effective-range expansion Lp Lp • Polarisation measurements (COSY) as, at • Formula also applicable for gd KLN G. Alexander et al., PR 173, 1452 (1968) observable S = s or t pp K+Lp SATURNE (Dm=2 MeV) a = (–1.5 ± 0.15exp ± 0.3th) fm A. Gasparian et al., subm. to PRC Markus Büscher, HYP2003
q+ • “pentaquark“ states (+)??? observed in (nK+) in photo- nuclear reactions • here: pp S++ • K0p pp pK0S+ , 3.30 GeV/c preliminary! nothing seen in pp L (K+p) !! “... we are optimistic to significantly contribute to the topic ...“ S-Hyperon Production p p p K0 S+ (COSY-TOF) Dalitz-plots: • at 3.20 GeV/c (see Fig.) rather smooth distribution Markus Büscher, HYP2003
Nonet of light scalar mesons JP=0+ Possible candidates S } f0(500) (““) k(800) f0(980) a0(980) f0(1370) K0*(1430) a0(1450) f0(1500) K*(?) K*(?) 9 states COSY a0-(?) a00(?) f0(?) a0+(?) } I f0(?) 9 states K*(?) K*(?) The Light Scalar Resonances Markus Büscher, HYP2003
Defined FS isospin Angular symmetries a0-f0 mixing +/0 (pp da0+ dK+K0) = 83% · 38 nb () pN d 0 0 pn d K+K- (pn d a00/f0) vs. (pp d a0+) (pd 3He a00/f0) vs. (pd 3H a0+) Angular asymmetries ANKE _ K+K0 Photon detector for identification needed The a0/f0(980) at ANKE/COSY Charge-symmetry breaking a0-f0 mixing dd 4He0 Photon detector (WASA) dd 4HeK+K- pp d + Summer 2003 COSY-11 pp pp K+K- MOMO pd 3He K+K- M. Büscher et al., hep-ph/0301126 Markus Büscher, HYP2003
pD K+X Tp = 2.0 GeV K+ Production from pA Reactions p A K+ X (ANKE) • Inclusive cross sections for • D, C, Cu, Ag, Au Targets • T = 1.0 ...2.3 GeV (TNN = 1.58 GeV) • Reaction mechanisms • Strong collectivity below threshold • Model calculations (CBUU transport, folding model...) • Correlation measurements pD data: • s(pn K+X) 4·s(pp K+X) pC K+X preliminary taken from: K.Tsushima et al., PRC 59, 369 (1999) Publication in preparation Markus Büscher, HYP2003
Nuclear Medium Effects p A K+ X (ANKE) • Cross-section ratios R(A/C) have very small systematic uncertainties • VK+ is sensitive to peak position in R(A/C) • pA reactions probe nuclear medium at rr0 • Best agreement with calculations for VK+(rr0) = +20 MeV • Expected accuracy <3 MeV K+ rescattering, pA K+X (ANKE) w/o potentials Coulomb repulsion 0 20 +40 MeV Nuclear potential Transport model: Z.Rudy et al., EPJ A 15, 303 (2002) cross section ratio (Au/C) VK = +20 MeV R(Au/C) T=2.3 GeV M.Nekipelov et al., PLB 540, 207 (2002) Markus Büscher, HYP2003
pp pK0S+ , 3.30 GeV/c preliminary! pA K+ X VK = +20 MeV R(Au/C) Strangeness Production … ... fundamental issues can be addressed ... • “Exotic“ states • + in pp pK0S+ ??? • Charge-symmetry breaking • dd a (p0h) and a0-f0 mixing • SU(3)flavor symmetry breaking • NY interaction at low relative energies (compare with NN) • In-medium masses ... needs to (and will) be vigorously investigated (at COSY)! Markus Büscher, HYP2003
Background < 10% I.d. of ppdK+K0 events @ ANKE Spectrometer dipole T = 2.65 GeV • K+-d coincidence measurement • Identification of ppdK+X events via TOF, E and particle momenta • Identification of ppdK+K0 events via dK+ missing mass COSY beam p d K+ t Markus Büscher, HYP2003
Fit: [(KK)Pd]S+ [(KK)Sd]P (pp da0+ dK+K0) = 83% · tot tot(pp dK+K0) = (38 ± 2stat± 14sys) nb First Results on the a0+ p p d K+K0 (ANKE) Q = 46 MeV V.Kleber et al., PRL in print; nucl-ex/0304020 Markus Büscher, HYP2003
L vs. S0 Production … pp pK+L/S0 (COSY-11) L/S0 ratio (same excess energy above threshold): R ~ 25 at threshold, R(E) 3 Difference between L and S0? |L> = |(ud)[I=0,1S0], s> I=0, ½+ |S0> = |(ud)[I= 1,3S1], s> I=1 , ½+ R ~ 3 coupling: gNLK, gNSK R ~ 27 SN Lp transition effective Lagrangian / N* PRC 63 (2001) 022202 destructive π/K interference NPA 684 (2001) 397 incoh. π/K nucl-th/0004022 resonance +π/ρ/η nucl-th/0004022 S. Sewerinet al., PRL 83, 682 (1999) Markus Büscher, HYP2003
Experimental challenges ... NN Partial Cross Sections: p p N Y K (mostly COSY data) more specifically: p p p L K+ p p p S0K+ p p p S+K0 p p n S+K+ (p p pp K+ K-) Markus Büscher, HYP2003