1 / 23

Regional rainfall variability over Central Africa:

This study aims to investigate the mechanisms responsible for rainfall variations in Central Africa. By analyzing factors such as teleconnections, sea surface temperatures, and regional jets, the study aims to provide insights into the causes of interannual/interdecadal variability during the rainy season and assess the sensitivity of the region to climate and land use changes. The findings will be valuable for forecasters and policymakers in planning for the future.

smalleyd
Download Presentation

Regional rainfall variability over Central Africa:

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Regional rainfall variability over Central Africa: What is influencing it?

  2. Aims and Motivation: • Investigate the overriding mechanisms responsible rainfall over central Africa. • Understand the cause of interannual/interdecadalvariability during the rainy season(s). Also, to asses the impacts of Teleconnections over the region. • Investigate the sensitivity of the Central Africa region to future climate and land use change through the use of differing scenario’s in a regional climate model. • Increased understanding of the overriding mechanisms responsible for variations in rainfall for forecasters. Background: • Central Africa roughly covers 2.6% of the Earth’s surface with an estimated population of around 120 million people, which is expected to rise to and estimated 250 million by 2050. • The countries of central Africa rely economically upon rain-fed agriculture for the majority of their livelihood(mainly subsidence based). • Land use change, particularly from deforestation may play a vital role in the future climate of the region dictated by increasing population pressures.

  3. Processes of influence: • MCS/Squall lines • The Inter-tropical Convergence Zone (ITCZ) • Sea Surface Temperatures (SSTs) • Regional African Jets: • African Easterly Jet-North (AEJ-N) • African Easterly Jet-South (AEJ-S) • Tropical Easterly Jet (TEJ) • Westerly African Jet (WAJ) • Role of the vegetation? • Teleconnections? • EL-Nino Southern Oscillation (ENSO) • Large-scale circulations (Hadley and Walker circulations) Dry Wet

  4. Rainbelt: 15°N 0° EQ Variability in rainfall linked to variability in Intensity and position. 15°S Variability in the rainbelt for August From Nicholson, 2008 and 2009.

  5. Methodology: • Data Sources: • Rain gauge network • NCEP-NCAR reanalysis • ERA-40 reanalysis • Regionalisation: • Based upon seasonal rainfall cycle • Composite Analysis: • Time series • 5-driest years of the wet season(s) • 5-wettest years of the wet season(s) • Cross validation approach

  6. Example - Region B: MAM Composites Wet Dry OLR SST

  7. Wet Dry Tropical SSTs 200mb Vectors

  8. Region B: SON Composites Wet Dry SSTs Tropical SSTs

  9. Wet Dry SLP In short: A complex relationship exists where a combination of differing regional and global scale processes can influence the rainfall over central Africa. It is thus imperative to better understand how these processes work and how future climate and regional land use change in central Africa impact them and rainfall.

  10. Preferable area for large-scale, organised, deep convection TEJ 200mb AEJ-S AEJ-N 500mb Seasonal rainfall (mm) Preferable area for shallow convection WAJ 1000mb EQ 20ᵒS 20ᵒN Schematic depicting a favourable jet configuration for enhanced rainfall over central Africa (note: Example shown for when the AEJ-S is present).

  11. Preferable area for large-scale, organised, deep convection TEJ 200mb ? AEJ-S AEJ-N 500mb Seasonal rainfall (mm) Preferable area for shallow convection WAJ 1000mb EQ 20ᵒS 20ᵒN Schematic depicting an unfavourable jet configuration for enhanced rainfall over central Africa (note: Example shown for when the AEJ-S is present). ? – Highly localised enhanced rainfall?

  12. Modelling: • HadAM3 • PRECIS • HadAM3– for resolution test (regional-scale variability) Uses of models: • Control run comparison with observation and reanalysis data. Test hypothesis’s on what controls variability in the region. • Sensitivity studies – land cover /future climate experiments – What role does the land surface play?

  13. NCEP minus PRECIS model example: JJA

  14. NCEP minus PRECIS model example: JJA

  15. NCEP vs. ERA40A comparison of reanalysis data over central Africa.

  16. Region B MAM: ERA NCEP

  17. Region B: ERA NCEP

  18. Region B MAM: ERA NCEP

  19. Region B: ERA NCEP

  20. Region B: ERA NCEP

  21. Future work: • HadAM3 run - Climatology run, how well does it compare theories • TAMSAT analysis/validation of region • Land cover change sensitivity experiments • Climate change sensitivity experiments.

More Related