70 likes | 282 Views
Ffwythiant Dwysedd Tebygolrwydd f(x). f(x). f(x). x. a. b. Probability Density Function f(x). Os oes gan hapnewidyn di-dor werth posib rhwng a a b , gallwn ddarlunio sut y rhennir un uned o debygolrwydd rhwng y gwerthoedd yma mewn graff o f(x).
E N D
Ffwythiant Dwysedd Tebygolrwydd f(x) f(x) f(x) x a b Probability Density Function f(x) Os oes gan hapnewidyn di-dor werth posib rhwng a a b, gallwn ddarlunio sut y rhennir un uned o debygolrwydd rhwng y gwerthoedd yma mewn graff o f(x). If a continuous random variable has a value between a and b, we can show how one unit of probability is distributed in a graph of f(x). = 1 Gan fod rhaid i gyfanswm yr arwynebedd o dan y gromlin fod yn hafal i 1 cyfan (cyfanswm tebygolrwydd), mae The area under the curve (the total probability) must be equal to 1, therefore
c d I ddarganfod P(c ≤ x ≤ d) To calculate P(c ≤ x ≤ d) f(x) x a b Pan fo X yn ddi-dor, gellir newid y symbol ≤ a rhoi < yn ei le fel bod P(c ≤ X ≤ d) = P(c < X < d) = P(c ≤ X < d) = P(c < X ≤ d) When X is continuous, the ≤ symbol can be replaced with < so that P(c ≤ X ≤ d) = P(c < X < d) = P(c ≤ X < d) = P(c < X ≤ d)
Enghraifft - Example • Dosrennir yr hapnewidyn di-dor X gyda ffwythiant dwysedd tebygolrwydd f a roddir gan • X is a continuous random variable with a probability density function • f(x) = kx(4-x) ar gyfer/for 0 ≤ x ≤ 4 • Darganfyddwch werth • Find the value of • k • P(X ≤ 3) • P(0 < X < 1 | X ≤ 3)
P(A|B) = P(A B) P(B) = P((0 < X < 1) (X ≤ 3)) P(X ≤ 3) c) P(0 < X < 1 | X ≤ 3) P((0 < X < 1) (X ≤ 3)) = P(0 < X < 1) P(0 < X < 1) = P(0 < X < 1 | X ≤ 3) =
Ymarfer/Exercise 1.1 Mathemateg - Ystadegaeth Uned S2 – CBAC Mathematics Statistics Unit S2 - WJEC Gwaith Cartref/Homework 10