1 / 7

Ffwythiant Dwysedd Tebygolrwydd f(x)

Ffwythiant Dwysedd Tebygolrwydd f(x). f(x). f(x). x. a. b. Probability Density Function f(x). Os oes gan hapnewidyn di-dor werth posib rhwng a a b , gallwn ddarlunio sut y rhennir un uned o debygolrwydd rhwng y gwerthoedd yma mewn graff o f(x).

Download Presentation

Ffwythiant Dwysedd Tebygolrwydd f(x)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ffwythiant Dwysedd Tebygolrwydd f(x) f(x) f(x) x a b Probability Density Function f(x) Os oes gan hapnewidyn di-dor werth posib rhwng a a b, gallwn ddarlunio sut y rhennir un uned o debygolrwydd rhwng y gwerthoedd yma mewn graff o f(x). If a continuous random variable has a value between a and b, we can show how one unit of probability is distributed in a graph of f(x). = 1 Gan fod rhaid i gyfanswm yr arwynebedd o dan y gromlin fod yn hafal i 1 cyfan (cyfanswm tebygolrwydd), mae The area under the curve (the total probability) must be equal to 1, therefore

  2. c d I ddarganfod P(c ≤ x ≤ d) To calculate P(c ≤ x ≤ d) f(x) x a b Pan fo X yn ddi-dor, gellir newid y symbol ≤ a rhoi < yn ei le fel bod P(c ≤ X ≤ d) = P(c < X < d) = P(c ≤ X < d) = P(c < X ≤ d) When X is continuous, the ≤ symbol can be replaced with < so that P(c ≤ X ≤ d) = P(c < X < d) = P(c ≤ X < d) = P(c < X ≤ d)

  3. Enghraifft - Example • Dosrennir yr hapnewidyn di-dor X gyda ffwythiant dwysedd tebygolrwydd f a roddir gan • X is a continuous random variable with a probability density function • f(x) = kx(4-x) ar gyfer/for 0 ≤ x ≤ 4 • Darganfyddwch werth • Find the value of • k • P(X ≤ 3) • P(0 < X < 1 | X ≤ 3)

  4. a)

  5. b) P(X ≤ 3) =

  6. P(A|B) = P(A B) P(B) = P((0 < X < 1) (X ≤ 3)) P(X ≤ 3) c) P(0 < X < 1 | X ≤ 3) P((0 < X < 1) (X ≤ 3)) = P(0 < X < 1) P(0 < X < 1) = P(0 < X < 1 | X ≤ 3) =

  7. Ymarfer/Exercise 1.1 Mathemateg - Ystadegaeth Uned S2 – CBAC Mathematics Statistics Unit S2 - WJEC Gwaith Cartref/Homework 10

More Related