1 / 21

R. Demkowicz-Dobrzański 1 , J. Kołodyński 1 , K. Banaszek 1 , M. Jarzyna 1 , M. Guta 2 1 Faculty of Physics , Warsaw

Theoretical tools for Quantum-enhanced metrology the illusion of the Heisenberg scaling. R. Demkowicz-Dobrzański 1 , J. Kołodyński 1 , K. Banaszek 1 , M. Jarzyna 1 , M. Guta 2 1 Faculty of Physics , Warsaw University , Poland

sora
Download Presentation

R. Demkowicz-Dobrzański 1 , J. Kołodyński 1 , K. Banaszek 1 , M. Jarzyna 1 , M. Guta 2 1 Faculty of Physics , Warsaw

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Theoreticaltools for Quantum-enhanced metrology the illusion of the Heisenberg scaling R. Demkowicz-Dobrzański1, J. Kołodyński1, K. Banaszek1, M. Jarzyna1, M. Guta2 1Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of Nottingham, United Kingdom

  2. Interferometry atits (classical) limits LIGO - gravitationalwavedetector NIST - Cs fountainatomicclock Michelson interferometer Ramsey interferometry Precision limited by:

  3. Whatarethefundamentalbounds inpresence of decoherence?

  4. General schemein q. metrology Input state of Nparticles phaseshift + decoherence measurement estimation Interferometerwithlosses (gravitationalwavedetectors) Qubitrotation + dephasing (atomicclockfrequencycallibrations)

  5. General schemein q. metrology Input state of Nparticles phaseshift + decoherence measurement estimation a priori knowledge Veryhard problem!

  6. Global approach Localapproach no a priori knowledgeaboutthephase we want to sensesmallfluctuationsaround a knownphase Tool: Symmetryimplies a simplestructure of theoptimalmeasurement Tool: Fisher Information, Cramer-Raobound Optimal state: Theoptimal N photon state for interferometry: D. W. Berry and H. M. Wiseman, Phys. Rev. Lett.85, 5098 (2000). J. J. . Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996). Heisenberg scaling

  7. Impact of decoherence? Localapproach Global approach Tool: Symmetryimplies a simplestructure of theoptimalmeasurement Tool: Fisher Information, Cramer-Raobound • Fisher Information, moredifficult to calculate • Optimalstates do not havesimplestructure Heisenberg scalinglost! • No analyticalformulas for theoptimalprecision and states • nontrivialeigenvalue problem • RDD, et al. PRA 80, 013825(2009) • U. Dorner, et al., PRL. 102, 040403 (2009) Analyticallowerbound: Analyticallowerbound: J. Kolodynski, RDD, PRA 82,053804 (2010) • S. Knysh, V. Smelyanskiy, G. Durkin PRA 83, (2011)

  8. Fundamentalbound on quantum enhancement of precision

  9. General methodfor otherdecoherencemodels? Fisher information via purifications System + Environment • B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Physics, 7, 406 (2011) • A. Fujiwara and H. Imai, J. Phys. A: Math. Theor.,41, 255304 (2008).

  10. General methodfor otherdecoherencemodels? Fisher information via purifications Kraus representation Equivalent Kraus set Minmizationoverdifferent Kraus representationnon-trivial dephasing • B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Physics, 7, 406 (2011)

  11. Canyou do itsimpler, more general, moreintutive? Yes!!!

  12. Classicalsimulation of a quantum channel Convex set of quantum channels

  13. Classicalsimulation of a quantum channel Convex set of quantum channels Parameterdependencemoved to mixingprobabilities Before: After: By Markov property…. • K. Matsumoto, arXiv:1006.0300 (2010)

  14. Classicalsimulation of Nchannelsusedinparallel

  15. Classicalsimulation of Nchannelsusedinparallel =

  16. Classicalsimulation of Nchannelsusedinparallel =

  17. Precision boundsthanks to classicalsimulation • For unitarychannels Heisenberg scalingpossible • Generlicdecoherence model will manifest shotnoisescaling • To getthetighestbound we need to findthe „worst” classicalsimulation

  18. The „Worst” classicalsimulation Quantum Fisher Informationat a givendependsonly on Itisenough to analize,,localclassicalsimulation’’: The „worst” classicalsimulation: Works for non-extremalchannels RDD,M. Guta, J. Kolodynski, arXiv:1201.3940 (2012)

  19. Dephasing: derivation of theboundin 60 seconds! dephasing Choi-Jamiolłowski-isomorphism (positivieoperatorscorrespond to physicalmaps) RDD,M. Guta, J. Kolodynski, arXiv:1201.3940 (2012)

  20. Dephasing: derivation of theboundin 60 seconds! dephasing Choi-Jamiolłowski-isomorphism (positivieoperatorscorrespond to physicalmaps) RDD,M. Guta, J. Kolodynski, arXiv:1201.3940 (2012)

  21. Summary • Heisenberg scalingislost for a genericdecoherence channel even for infinitesimalnoise • Simple bounds on precision can be derivedusingclassicalsimulation idea • Channels for whichclassicalsimulationdoes not work • ( extremalchannels) have less Kraus operators, othermethodseasier to apply RDD,M. Guta, J. Kolodynski, arXiv:1201.3940 (2012)

More Related