1 / 15

RAMBATAN GELOMBANG PERTEMUAN 02

RAMBATAN GELOMBANG PERTEMUAN 02. Matakuliah : K0252 / Fisika Dasar II Tahun : 2007.

soren
Download Presentation

RAMBATAN GELOMBANG PERTEMUAN 02

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RAMBATAN GELOMBANG PERTEMUAN 02 Matakuliah : K0252 / Fisika Dasar II Tahun : 2007

  2. Pertemuan ini membahas mengenai rambatan gelombang pada tali dan dalam gas atau udara . Sebagaimana yang telah dikemukakan sebelumnya gerak gelombang dapat dipandang sebagai perpindahan energi dan momentum dari suatu titik dalam ruang ke titik yang lain tanpa perubahan tempat partikel-partikel materi. 1. Gelombang transmisi dan refleksi Setiap gelombang yang datang pada bidang batas antara dua . medium , sebagian gelombang akan diteruskan (ditansmisikan) ke . dalam medium kedua , yang disebut : gelombang transmisi , yang . sebagian lagi akan dipantulkan (direfleksikan) ke medium pertama , . yang disebut gelombang refleksi . 2.Pantulan pada ujung bebas dan tetap • Pantulan pada ujung tali tetap (terikat ) : Pada ujung tali terikat, gelombang pantul akan mengalami perubahan fase sebesar  . 3

  3. Gelombang datang : Y1 = Ym sin ( kX - t ) Gelombang pantul : Y2 = Ym sin ( kX + t +  ) • Pantulan gelombang pada ujung bebas Gelombang pantul tidak mengalami perubahan fase. Gelombang datang : Y1 = Ym sin ( kX - t ) Gelombang pantul : Y2 = Ym sin ( kX + t) • Gelombang pantul dan tranmisi pada sambungan tali - Tali ringan ke tali berat tali ringan tali berat Vd μ1 μ2 > μ1 Vt Vp μ = kerapatan tali 4

  4. Gelombang pantul mengalami perubahan fase sebesar  dan gelombang tranmisi tidak mengalami perubahan fase Gelombang datang : Yd = Ad sin ( kX - t ) Gelombang pantul : Yp = Ap sin ( kX + t+ ) Gelombang transmisi : Yt = At sin ( kX - t ) -Tali berat ke tali ringan Gelombang pantul dan gelombang tranmisi tidak mengalami perubahan fase Gelombang datang : Yd = Ad sin ( kX - t ) μ2 < μ1 μ1 Vd Vp Vt 5

  5. Gelombang pantul : Yp = Ap sin ( kX + t ) Gelombang transmisi : Yt = At sin ( kX - t ) 3. GELOMBANG STASIONER Gelombang stasioner (diam ) atau gelombang tegak , dihasilkan oleh inteferensi / superposisi antara gelombang datang dengan gelombang pantul. Persaman gelombang stasioner : Gelombang datang : yd = ym sin (kX – t ) (01) Gelombang pantul : yp = ym sin ( kX + t ) (02) y = yd + yp = ym [ sin ( ωt - kx ) + sin ( ω t + kx) y = 2 ym [ sin kx ] cos ω t (03) Posisi puncak gelombang tak berubah terhadap kedudukan (x) , disebut gelombang stationer 6

  6. - Titik-titik dengan simpangan besar disebut titik perut (anti . node – AN ) - Titik-titik dengan simpangan nol disebut titik simpul (node-N) - Jarak antara dua titik simpul berdekatan = jarak antara dua . titik perut berdekatan = λ /2 - Amplitudo gelombang stationer = 2ym sin (kX) Amplitudo ini akan maksimum bila : sin (kX) = ± 1 ; yaitu untuk : kX = π/2 , 3 π /2 , 5 π /2 , ….. atau : X = λ/2 , 2λ/2 , 3λ/2 , 5λ/2 , … • Getaran tali yang ujung-ujungnya tertambat Untuk keadaan resonansi , kedua ujung terikat merupakan . titik-titik simpul . Maka untuk keadaan resonansi , panjang tali (L) akan merupakan : 7

  7. L = n λn /2 = λ/2 , 2λ/2 , 3λ/2 , 5λ/2 , …; n = 1,2,3, ….. atau λ : λn = 2L/n = 2 L , 2 L / 2 , 2 L / 3 , 2 L / 5 , ... (04) sehingga frekuensi yang dapat dibangkitkan adalah : fn = V/ λn = V/2L , 2V/2L , 3V/2L , 4V/2l , … (05) ■ Nada dasar/nada atas dan deret harmoni .Tali yang ke dua ujungnya tertambat akan menghasilkan frekuensi . yang terdiri dari nada dasar dan nada-nada atas yang secara . keseluruhan disebut deret harmoni , sebagaimana berikut ini : Harmoni pertama (nada dasar) : f1 = V/2L Harmoni ke dua (nada atas pertama) : f2 = 2V/2L = 2 f1 Harmoni ke tiga (nada atas ke dua ) : f3 = 3V/2L = 3 f1 … dst 8

  8. simulasi gelombang tegakhttp://faraday.physics.utoronto.ca/IYearLab/Intros/StandingWaves/Flash/standwave.html 4. Pipa organa Gelombang diam tegak yang dihasilkan oleh Inteferensi antara gelombang datang dan gelombang pantul dalam suatu ruangan tertutup . ■ Pipa Organa Terbuka : Untuk keadaan resonansi , Ujung pipa terbuka akan merupakan titik perut , atau panjang pipa ( L ) sama dengan : L = λ/2 , 2λ/2 , 3λ/2 , ….. dst atau panjang gelombang : λ = 2L , 2L/2 , 3L/2 , … dst sehingga frekuensi resonansinya , f : 9

  9. f = V/2L , 2V/2L , 3V/2L , …dst Maka deret harmoni pipa organa terbuka adalah : fn = n V/2L Harmoni pertama , f1 (nada dasar) : f1 = V/2L Harmoni ke dua , f2 (nada atas pertama) : f2 = 2 V/2L = 2 f1 Harmoni ke tiga , f3 (nada atas ke dua) : f3 = 3 V/2L = 3 f1 Harmoni ke n : fn = n V/2L = n f1 (06) Untuk pipa organa terbuka deret harmoninya terdiri atas harmoni ganjil maupun harmoni genap 10

  10. ■ Pipa Organa Tertutup: Ujung pipa organa tertutup merupakan simpul sehingga deret Harmoni pipa organa tertutup menjadi : fn = (2n - 1) V/4L ; n = 1 , 2 , 3 , … (07) Harmoni pertama f1 (nada dasar): f1 = V/4L Harmoni ke dua f2 (nada atas pertama) : f2 = 3 V/4L = 3 f1 Harmoni ke tiga f3 (nada atas ke dua) : f3 = 5 V/4L = 5 f1 ( hanya harmoni ganjil) Pada pipa organa tertutup yang ada hanya harmoni ganjil 11

  11. Contoh soal 1 : Dua buah gelombang merambat pada sebuah tali yang tertambat di x = 0 dalam arah yang berlawanan , yaitu : y1 = (0.20 m) sin (2.0 x – 4.0 t ) y2 = (0.20 m) sin (2.0 x + 4.0 t ) , x dalam m , t dalam sekon ke dua gelombang ini menghasilkan gelombang tegak a. Tentukanlah persamaan gelombang tegaknya b. Tentukan amplitudo max di x = 45 cm c. Dimanakah ujung tetap yang satunya (x > 0) d. Berapakah amplitudo max dan dimana terjadinya . Jawaban : a. konstanta rambatan ke dua gelombang , k = 2.0/m frekuensi sudut ke dua gelombang , ω = 4.0 rad/s 12

  12. b. Dari persamaan (03) y = 2 ym sinkx cos ωt → pers. Gel tegaknya y = 0.4 m sin 2.0 x cos 4.0 t untuk x = 0.45 m maka y = 0.4 m sin 0.9x cos 4.0 t = 0.31m cos 4.0t Jadi amplitudo max adalah 0,31m bila cos 4.0 t = 1. c. Oleh karena terjadi gelombang tegak maka ujung yang satunya harus merupakan simpul (node) dan ini terjadi bila panjang tali L =n λ/2 , n = 1 ; λ = 2π/k→ L = 1.57 m atau kelipatannya d. Apabila panjang tali 1.57 m maka amplitudo max terjadi di tengahnya (anti node) , yaitu 0.785 m Contoh soal 2 : Sebuah dawai piano panjang 1.10 m dengan massa 9.00 gr 13

  13. a. Berapa tegangan harus diberikan pada dawai agar dawai bergetar dengan nada dasar 131 Hz . b. Hitunglah ke tiga harmoniks diatasnya . Jawaban : a. Dawai bergetar dengan nada dasar , maka λ = 2L dan V = λ• f = (2 • 1.10 m) 131 Hz = 288 m/s V = √(S/μ) → S = μ V2 = (0.009 kg/1.1 m) • (288 m)2 S = 699 N b. fn = n f1 maka f2 = 2 • 131 Hz = 262 Hz f3 = 393 Hz f4 = 524 Hz 14

  14. Terima kasih SAMPAI JUMPA 15

More Related