350 likes | 458 Views
Scientific need, design and construction of a muon telescope for the Pierre Auger Observatory
E N D
Scientific need, design and construction of a muon telescope for the Pierre Auger Observatory R. Alfaro Molina3, M. A. Diózcora Vargas Trevino5, J. C. D'Olivo1, H. Márquez-Falcón6, G. A. Medina-Tanco1, E. Nahmad-Achar1, G. Paic1 , M. E. Patino Salazar1, H. Salazar Ibarguen4, Federico Sanchez1, A. Sandoval3, J. F. Valdes Galicia2, S. Vergara Limon5, L. M. Villasenor6, A. Redondo Gonzalez7, N. Pacheco Gómez7, L. del Peral7, X. Bertou8, I. Allekotte8 (1) Instituto de Ciencias Nucleares , Universidad Nacional Autónoma de México, México, D.F., C.P. 04510. (2) Instituto de Geofísica, Universidad Nacional Autónoma de México, México, D.F., C.P. 04510. (3) Instituto de Física, Universidad Nacional Autónoma de México, México, D.F., C.P. 04510. (4) Instituto de Física, Universidad de Puebla, México, Puebla, C.P. 72570. (5) Facultad de Ciencias de la Electrónica, Grupo de Robótica, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur C. U., Edif. 182, C.P. 72570, Puebla, México. (6) Universidad Michoacana de San Nicolás Hidalgo Morelia, Mich., C.P. 58040, México. (7) Universidad de Alcalá, España (8) Inst. Balseiro, Bariloche, Argentina
Enhanced spectral region to be covered AMIGA & HEAT BASELINE Auger G. Medina-Tanco
160000 Auger baseline design
Auger enhancements 2 SD graded infills AMIGA Buried muon counter scintillators • Lower the full efficiency threshold of Auger down to 0.1 EeV • Improve primary discrimination in the 2nd Knee & ankle region 3 higher elevation FD telescopes HEAT G. Medina-Tanco
160000 HEAT + AMIGA layout & Auger
AMIGA layout Graded infill SD array 1. Full efficient @ E > 1017 eV 5.9 km2 – 24 tanks – 433 m 2. Full efficient @ E > 3.5x1017 eV 23.5 km2 – 42 tanks – 750 m + buried muon scintillators: 30m2 per tank depth: ~ 2-3m Mode: counters G. Medina-Tanco
AMIGA SD-station [ (g+e±) + m ] & Scintillator [ m ] EAS Regular Auger water Cerenkov tank 2-3m Muon counter ground G. Medina-Tanco
WLS fibers: Kuraray Y-11 175 ppm 1.2 mm diameter • Scintillator strips are extruded polystyrene doped with fluors: • PPO (1%) and POPOP (0.03%) • Co-extruded TiO2 reflective coating Fiber is glued into groove and covered with reflective foil AMIGA: muon counters – scintillator strips
AMIGA: muon counters – scintillator strips Scintillator area at each station: 30 m2 Multianode PMTs 64 pixels M64 (Hamamatsu) G. Medina-Tanco
z y x ~ 3 m e- e- fewmm e- e- Geant4 – Parent: muon - Em = 5 GeV r ~ 1.8 g/cm3 m F. Sanchez & GMT
z y x ~ 2.5-3.0 m y x Geant4 – Parent: photon - Eg = 5 GeV r ~ 1.8 g/cm3 F. Sanchez & GMT
50 cm 50 cm 50 cm 50 cm Geant4 – g/e+/- Longitudinal profile 0.5 GeV 1.0 GeV 3 m 3 m 10.0 GeV 5.0 GeV 3 m F. Sanchez & GMT
1018 eV E dN/dE [m-2] log E [GeV] Region of interest for the shielded muon counters EeV protons: distribution functions @ 200 m from core This is where BATATA enters into the picture G. Medina-Tanco
y x D2 D1 D3 BATATA: punch-through characterization system 2 m g 2 m ~30 cm ~30 cm ~2.0 m m g m x PMT + electronics y e m G. Medina-Tanco
Surface trigger array |n3|=ct3 n t3 l l |n2|=ct2 l t1=0 t2 G. Medina-Tanco
s3 l l s2 s1 l WHOLE BATATA ARRAY mSD G. Medina-Tanco
End-to-end BATATA simulations EAS AIRES 200m Core 10m 10m 10m Auger tank Geant4 xy BATATA planes F. Sanchez & GMT (2007)
End-to-end BATATA simulations: Trigger 3 tanks Temporal & spatial unthinnings are applied F. Sanchez & GMT (2007)
End-to-endsimulations Scint.Strip + opticalfibercharacterization & calibration 180 cm 100 cm In order to implement a realistic trigger threshold in the BATATA simulations, we are calibrating at present energy deposit vs signal (mV) via simulated optical photons at the PMT window. 20 cm Kuraray Preliminar simulation Actual measurements
End-to-end BATATA simulations Trigger on energy deposit is applied F. Sanchez & GMT (2007)
AMIGA application of BATATA simulation machine g e e Sideview Top view m m g m Tiltedview Zoomedsideview G. Medina-Tanco
Data analysis Track discrimination: End-to-end simulations NN analysis Multiparametric analysis E. Nahmad & F. Sanchez & GMT (2007)
Front end electronics for one channel with a differential output LVDS AD8009 MAX9201 SN55LVDS31 C O N E C T O R D I F 1 2 OUT OUT IN 1A PMT H7564B 1Y 3 G=10 1Z Amplifier discriminator G 64 G DAC-TLC7226C VDD DB0 DB7 C O N E C T O R OUT A OUT B WR OUT C A0 Setup of the discriminator level A1 OUT D REF S. Vergara, E. Patiño, M. A. D. Vargas Trevino & G. Paic G. Medina-Tanco
Electronics: front-end 64 channels board S. Vergara, E. Patiño, M. A. D. Vargas Trevino & G. Paic
DAQ: Huberto Salazar (BUAP) Luis Villaseñor (UMSNH)
Other applications • Punch-through characterization • Measurement of the angular distribution functions at ground for g, e±, m • Check temporal (& spatial ?) un-thinning • Low energy directional m background: sky maps • Astrophysics • Space weather • CR-climate connections G. Medina-Tanco
Casing – another idea Simplest. But: Too large? Too heavy? ~0.4 m ? ~0.15 m ? x = 2 m y = 2 m inspection lids Silicon filing ?
Casing requirements Gustavo Medina-Tanco gmtanco@nucleares.unam.mx • Buried life expectance: 5 yr • Water-tight • Corrosion free • Salt resistant • Maximum working temperature: 50 oC (at the electronic box) • Can be opened and re-sealed in a non-destructive way (desirably) under field conditions. • Sturdy enough as to survive shipping, handling and burying. • Material: TBD • Color: white or aluminum -- must be reflective • Dimensions: • footprint 2m x 2.5 m ; • Thickness: • scintillator section: ~1.2 cm (interior) • Optical fiber bending section: 1.2 cm (interior) • Electronic housing section: ~20 cm (internal) • Lid thickness: < 2 - 3 mm (?) -- x & y planes must be as much in physical contact as possible. • Base thickness: TBD • Water-tight openings for circular and flat cables. Location must take into account optimal flat cable bending. • Support for cookie, PMT and (vertical) electronic board (must be rigid at T~50 oC) • Optical fiber bending section must not collapse under a pressure of at least 600 g/cm2. A filling may be used. Potting (rigid or fluid) may not be desirable). With fungicide. • Longitudinal displacement of scintillator bars must be blocked. • Electronics / optical coupling inspection lid to be used under field conditions (w/o tightness compromise). • Handles for crane • Ensure the perpendicularity of x & y • Ensure that different planes are aligned among themselves
BATATA: current status Design - General design: FROZEN (except exact depths of planes 1 & 2) - Operating strategy: FROZEN End-to-end simulations: 90% - Ongoing: calibration w/measurements Electronics: 50% - Ongoing: frontend printing/assembling & FPGA Scintillator - 32m2 from Fermilab – built & delivered in TX optical fiber - FROZEN – Bicron PMT - FROZEN – 64 pix PMT Casing - started: CCADET - ICN - IG (UNAM) Solar power supply - Univ. de Alcalá control & processing software - Ongoing: ICN-UNAM / Univ. de Alcalá Data analysis software: 70% - 2 startegies: multiparam. analysis & N-Networks SD array: - Installation in Nov/2007: IB/BUAP/UMSNH/UNAM 80% G. Medina-Tanco
BATATA: (dynamical) cronogram Tentative Chronogram Assembly: November 2007 Delivery: February 2007 Installation: March 2008 Operation starts: April 2008 Stable operation: May 2008 G. Medina-Tanco