1 / 12

Detection Microcalcifications in Mammograms Using Wavelet

Detection Microcalcifications in Mammograms Using Wavelet. Reporter : 陳宏維 Date : 2007/05/22. Outline. Introduction Fourier TF. V.S. Wavelet TF. Two-Dimension Wavelet Transform Performance Classifier. Introduction. 乳房內部成份 : 脂肪、腺體、結締組織 鈣化形成 : 乳汁沉澱或細胞壞死

spike
Download Presentation

Detection Microcalcifications in Mammograms Using Wavelet

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Detection Microcalcifications in Mammograms Using Wavelet Reporter : 陳宏維 Date : 2007/05/22

  2. Outline • Introduction • Fourier TF. V.S. Wavelet TF. • Two-Dimension Wavelet Transform • Performance • Classifier

  3. Introduction 乳房內部成份 : 脂肪、腺體、結締組織 鈣化形成 : 乳汁沉澱或細胞壞死 亮度 : 脂肪 < 腺體及結締組織 ≦微鈣化組織 (a) Fatty (b) Fatty-glandular (c) Dense-glandular

  4. One-Dimensional Statistics (a) One-Dimensional Curve (b) ROI (c) Gaussian Object

  5. Discontinuity Fourier TF. V.S. Wavelet TF. (c) Fourier Coefficient Original Signal: (a) Original Signal (b) Wavelet Coefficient

  6. Two-Dimension Wavelet Transform 2 2 2 2 2 2 2 2 (a) Analysis 2 2 2 2 2 (b) Synthesis

  7. Wavelet Octave (b) Original Image (a) Wavelet Octaves (c) Original Image

  8. Performance • True Positive (TP) : 系統將病變組織判斷為病變組織。 • True Negative (TN) : 系統將病變組織誤判為正常組織。 • False Positive (FP) : 系統將正常組織誤判為病變組織。 • False Negative (FN) : 系統將正常組織判斷為正常組織。

  9. Wavelet Function (a) Original Image (d) BAUD 4 (b) BAUD 4 Filter (e) BAUD 20 (c) BAUD 20 Filter

  10. α(x) β(x) xmax x (Gray Level Value) xmin t Classifier α(x) : pdf for the breast tissue β(x) : pdf for the microcalcifications Renyi’s entropy :

  11. Detection (a) Original Image (b) Truth Image (c) Detected Microcalcification

  12. Reference • K. Thangavel, M. Karnan, R. Sivakumar, and A. Kaja Mohideen, “Automatic Detection of Microcalcification in Mammograms- A Review,” ICGST, 2006. • Giuseppe Boccignone, Angelo Chianese, and Antonio Picariello, “Computer aided detection of microcalcification in digital mammograms,” Computer in Biology and Medicine, 2000. • Robin N. Strickland, Senior Member, IEEE, and Hee Π Hahn, “Wavelet Transforms for Detecting Microcalcification in Mammograms,” IEEE Trans. Med. Image, Vol. 15, No. 2, Appil, 1996 • Ted C. Wang, and Nicolaos B. Karayianmis, “Detection of Microcalcification in Digital Mammograms Using Wavelets,” IEEE Trans. Med. Image, Vol. 17, No. 4, August, 1998 • 繆紹剛, ”數位影像處理 活用--Matlab”, 全華科技圖書股份有限公司, 2002

More Related