1 / 42

Understanding Equations and Graphs in Mathematics

Learn about functions, relations, graphing equations, and properties of lines in this comprehensive guide. Understand functions, slopes, and graphing methods with practical examples.

spilger
Download Presentation

Understanding Equations and Graphs in Mathematics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TMAT 103 Chapter 4 Equations and Their Graphs

  2. TMAT 103 §4.1 Functions

  3. §4.1 – Functions • Relations • Set of ordered pairs (x, y) • Independent variable • x • Domain • Dependent variable • y • Range

  4. §4.1 – Functions • Ex: Find the domain and range of the relation y + x = 2 • Ex: Find the domain and range of the relation

  5. §4.1 – Functions • Function • Relation where no 2 ordered pairs have the same first element • Ex: • Is {(1, 2), (5, 11), (4, 2), (1, 7)} a function? • Ex: • Is {(1, 1), (5, 11), (4, 1), (-21, 7)} a function?

  6. §4.1 – Functions • Ex: Is y + x = 2 a function? • Ex: Is x = y2 a function?

  7. §4.1 – Functions • Functional notation • Isolate y and replace it with f(x)

  8. §4.1 – Functions • Using function notation • Ex: Given f(x) = x2 – 3, find:f(7)f(–2)f(z)f(a + b)

  9. §4.1 – Functions • Ex: Given f(t) = 5 – 2t + t2 and g(t) = t2 – 4t + 4 find:f(4)g(0)f(t) + g(t)

  10. TMAT 103 §4.2 Graphing Equations

  11. §4.2 – Graphing Equations • Cartesian Coordinate System • Descartes • Rectangular coordinate system • x – axis • y – axis • origin • quadrants

  12. §4.2 – Graphing Equations Cartesian Coordinate System

  13. §4.2 Graphing Equations • Plot each of the following points on the Cartesian coordinate system:A(3,1) B(2, –3) C(–4,–2) D(–3, 0) E(–6, 2) F(0, 2)

  14. §4.2 Graphing Equations • Examples: • Graph y = –3x – 2 • Graph y = x2 + 3 • Graph y = –3x2 – x + 2

  15. §4.2 Graphing Equations • Solving equations by graphing • Ex: Given the graph of y = x3 + 4x2 – x – 4 below, solve the equation y = x3 + 4x2 – x – 4 when:y = 0y = 3y = 6

  16. §4.2 Graphing Equations • Ex: Solve the equation y = 2x2 – 5x – 3 graphically for y = 1, –2, and –10

  17. TMAT 103 §4.3 The Straight Line

  18. §4.3 – The Straight Line • Slope of a line • If P1(x1, y1) and P2(x2, y2) represent any two points on a straight line, then the slope m of the line is:

  19. §4.3 The Straight Line • Examples: • Find the slope of the line passing through (1, 7) and (4, –3) • Find the slope of the line passing through (1, 5), and (3, 2)

  20. §4.3 The Straight Line • Properties of the slope of a line • If a line has positive slope, then the line slopes upward from left to right (rises) • If the line has negative slope, then the line slopes downward from left to right (falls) • If the line has zero slope, then the line is horizontal (flat) • If the line is vertical, then the line has no slope since x1 = x2 in all cases

  21. §4.3 The Straight Line • Examples • Graph the line with slope 3 that passes through (1, 4) • Graph the line with slope –2 that passes through (0, 7) • Graph the line with slope 0 that passes through (–1, 2) • Graph the line with no slope that passes through (3, 5)

  22. §4.3 The Straight Line • Point slope form of a straight line • If m is the slope and (x1, y1) is any point on a non-vertical line, its equation is:y – y1 = m(x – x1)

  23. §4.3 The Straight Line • Examples: • Find the equation of the line with slope –2 and which passes through (4, –1) • Find the equation of the line passing through (10, 3), and (3, 0)

  24. §4.3 The Straight Line • Slope-intercept form of a straight line • If m is the slope and (0, b) is the y-intercept of a non-vertical line, its equation is:y = mx + b

  25. §4.3 The Straight Line • Examples: • Find the equation of the line with slope –2 and which passes through (0, –1) • Find the equation of the line with slope 5 and y-intercept 16

  26. §4.3 The Straight Line • Equation of a horizontal line • If a horizontal line passes through the point (a, b), its equation is:y = b

  27. §4.3 The Straight Line • Equation of a vertical line • If a vertical line passes through the point (a, b), its equation is:x = a

  28. §4.3 The Straight Line • Examples: • Find the equation of the line parallel to and 7 units below the x-axis • Graph the line x = 4

  29. TMAT 103 §4.4 Parallel and Perpendicular Lines

  30. §4.4 – Parallel and Perpendicular Lines • Parallel Lines • Two lines are parallel if either of the following conditions holds: • They are both parallel to the x-axis • They both have the same slope

  31. §4.4 – Parallel and Perpendicular Lines Parallel Lines

  32. §4.4 – Parallel and Perpendicular Lines • Examples: • Determine if l1 and l2 are parallel: • l1: y = 3x – 15 • l2: y = 3x + 7 • Determine if l3 and l4 are parallel: • l3: y = –2x – 15 • l4: 2y – 4x = 7

  33. §4.4 – Parallel and Perpendicular Lines • Perpendicular Lines • Two lines are perpendicular if either of the following conditions holds: • One line is vertical with equation x = a, and the other line is horizontal with equation y = b • Neither is vertical and the slope of one line is the negative reciprocal of the other.

  34. §4.4 – Parallel and Perpendicular Lines Perpendicular Lines

  35. §4.4 – Parallel and Perpendicular Lines • Examples: • Determine if l1 and l2 are perpendicular: • l1: y = 2x – 15 • l2: y = –½x + 7 • Determine if l3 and l4 are perpendicular : • l3: y = –3x – 15 • l4: 9y – 3x = 7

  36. TMAT 103 §4.5 The Distance and Midpoint Formulas

  37. §4.5 The Distance and Midpoint Formulas The Distance Formula

  38. §4.5 The Distance and Midpoint Formulas • Distance Formula • The distance between two points P(x1, y1) and Q(x2, y2) is given by the formula

  39. §4.5 The Distance and Midpoint Formulas • Examples: • Find the distance between the points (1, 2) and (7, 14) • Find the distance between the points (–3, 2) and (4, –7)

  40. §4.5 The Distance and Midpoint Formulas The Midpoint Formula

  41. §4.5 The Distance and Midpoint Formulas • Midpoint Formula • The coordinates of the point Q(xm, ym) which is midway between the two points P(x1, y1) and R(x2, y2) are given by:

  42. §4.5 The Distance and Midpoint Formulas • Examples: • Find the midpoint of the points (1, 2) and (7, 14) • Find the midpoint of the points (–3, 2) and (4, –7)

More Related