310 likes | 330 Views
Explore RSA Cryptosystem, modular exponentiation and multiplication algorithms, MATLAB simulation, public key cryptography, and implementation challenges. Learn about RSA key generation, encryption, decryption, and security considerations.
E N D
RSA Cryptosystem 電機四 B88901144 游志強
Outline • Introduction(Cryptography) • RSA Cryptosystem • Modular Exponentiation Algorithms • Modular Multiplication Algorithms • MATLAB Simulation • Reference
Cryptography • Symmetric : (conventional) Public channel Message Message Encryption Decryption Secret channel Key generator Terminal (transmitter) Terminal (receiver) • Public key : (e.g. RSA) Public channel Message Message Encryption Decryption Public channel Key generator Terminal (transmitter) Terminal (receiver)
Comparison • Symmetric: (fast) • At least 1000 times faster than public-key • Public key: (slow) • Computers are getting faster=> in 15 years. • Bandwidth requirement are also increasing. • Are used for encrypt keys, not for encrypt messages.
Public Key Cryptosystems • Pohlig-Hellman encryption scheme • Rabin’s scheme • RSA Cryptosystem • Named after its inventers:Rivest, Shamir and Adleman • Patent:Sep. 20, 1983tonow
RSA Cryptosystem • RSA key generate: • Generate two large prime numbers: p, q • Compute N =p *q, z =(p -1)*(q -1) • Choose a number relatively prime to z and call it e. • Find d such that e *d = 1 ( mod z ) (extended Euclidean algorithm) • The keys: Public key <==> Private key Ke=(N, e) Kd=(N, d)
En/Decryption • Encryption: • Use public key: Ke = (N, e) • C = M e mod N ( M : Message/Plaintext ) • Decryption: • Use private key: Kd = (N, d) • M = C d mod N ( C : Encrypted message/Ciphertext) • C d = M e*d = M r(p-1)(q-1)+1 = M (mod N)
RSA Operation • Processing block diagram : C = M e mod N M = C d mod N Public channel Message Message Encryption Decryption M C M Ke Kd Public channel Key generator Ke Kd=(N, d) Ke=(N, e) Terminal (transmitter) Terminal (receiver) N =p *q z =(p -1)*(q -1) e *d = 1 (mod z )
Security of RSA Cryptosystem • Security based on long wordlength • The number of N, e, d in Kd, Ke >= 1024 bit • Attack!!! • Exhaustive search: (Impossible) • Only 1 available key in 21024 elements • Add more security • Increase wordlength (e.g. 2048, 4096..)
Implementation Problem • Large exponent and modular (issue) • How to compute M e mod N (1024 bit) • High computational complexity • How to improve speed performance
Implementation of RSA • Software • Very slow (low efficiency) • Hardware • Montgomery’s Algorithm • Now • A new sequential algorithm called Montgomery Product Algorithm is used to design a word-based RSA processor
Modular Exponentiation • H Algorithm • MSB first (1 bit/iteration) • L Algorithm • LSB first (1 bit/iteration) • M-array Algorithm • MSB first (m bit/iteration)
H Algorithm R=ME (mod N) Output:Result= R[k-1] = ME(mod N) H(M,E,N) { R[0]=M; for(i=0;i<k-1;i++) { R[i+1] = R[i] * R[i] (mod N); //Squaring if( E[k-i-2]==1) R[i+1] = R[i+1] * M (mod N); //Multiplying else R[i+1] = R[i+1];} return R[k-1];}
L Algorithm R=ME (mod N) Output:Result= R[k] = ME(mod N) L(M,E,N) { R[0]=1; M[0]=M; for(i=0;i<k;i++) { M[i+1] = M[i] * M[i] (mod N); //Squaring if( E[i]==1) R[i+1] = R[i] * M[i] (mod N); //Multiplying else R[i+1] = R[i];} return R[k];}
Example for H & L Algorithm Calculate ME mod N, if E=1310=11012 1, H Algorithm R=(((M1)2*M1)2*M0)2*M1 mod N =(((M1)2*M1)2)2*M1 mod N =M13 mod N 5 mul 2, L Algorithm R= (M)1 *(M2)0 *(M4)1* (M8)1 mod N = (M)1 *(M4)1* (M8)1 mod N =M13 mod N 3 mul & 2 mul
M-array Algorithm • Is similar to H Algorithm • But scans m-bit in exponent in a single iteration • Needs another time to create the storage table
Modular Multiplication • Montgomery’s Algorithm • P. L. Montgomery • Booth-Encoded Montgomery’s Algorithm • 呂誌忠學長 • Montgomery Product Algorithm • C. K. Koc, RSA Libratory
Montgomery’s Algorithm M(A,B,N) /* P [n]=A*B*2 - n mod N */ { P[0]=0; for (i=0;i<n;i++) /* n iteration */ { qi=(P[i]+aiB) mod 2; P[i+1]=(P[i]+aiB+qiN) div 2; } return P[n]; }
Booth-Encoded Montgomery • Scan 2-bit/iteration • Montgomery’s: 1-bit/iteration • Booth-encoded
Montgomery Product Algorithm MonPro(a, b) { t = A*B; m = (t*N’) mod 2n; u = (t + m*N) div 2n; if(u >= N)then return u – N; else return u; } N’ * N = -1 (mod 2n)
Extension of Montgomery Product Algorithm (1) • n = r * s • Use a r-bit processor • Slower speed • Very small chip area!!
Extension of Montgomery Product Algorithm (2) //t = A * B for(i = 0; i < s; i = i + 1) { C = 0; for(j = 0; j < s; j = j + 1) { (C, S) = t[i+j] + A[j]*B[i] + C; t[i+j] = S;} t[i+s] = C;}
Extension of Montgomery Product Algorithm (3) // m = (t * N’) mod 2r // t = t + m * N for(i = 0; i < s; i = i + 1) { C = 0; m = (t[ i ] * N’) mod 2r; for(j = 0; j < s; j = j + 1) { (C, S) = t[ i + j ] + m * N[ j ] + C; t[ i + j ] = S;}
Extension of Montgomery Product Algorithm (4) for(j = i + s; j < 2s; j = j + 1) { (C, S) = t[ j ] + C; t[ j ] = S; } } t[ 2s ] = C; // u = t div 2r*s for(j = 0; j <= s; j = j + 1) { u[ j ] = t[ j + s ]; }
Extension of Montgomery Product Algorithm (5) B = 0; for(j = 0; j <= s; j = j + 1) { (B, D) = u[ j ] – n[ j ] – B; v[ j ] = D; } if(B = 0)then return v[ s-1 : 0 ]; else return u[ s-1 : 0 ];
Modular Inverse Algorithm • N’ * N = -1 (mod 2r) • N’ * (2r - N) = 1 (mod 2r) • N’ = ModInverse(2r - N) ModInverse(x, 2w) {y = 1; for(i = 2; i <= w; i = i + 1) { if( 2i –1 < [x * y (mod 2i)] )then y = y + 2i –1;} } return y;}
MATLAB Simulation • Extension of Montgomery Product Algorithm
MATLAB Simulation • Extension of Modular Exponentiation
Reference [1] P. L. Montgomery, “Modular multiplication without trial division,”Math. Comput., vol. 44, pp.519-521, Apr. 1985. [2] Jye-Jong Leu and A.-Y. Wu, “A Scalable Low-Complexity Bit-Serial VLSI Architecture for RSA Cryptosystem,” in IEEE Workshop on Signal Processing Systems (SiPS-99), pp. 586-595, Taipei, Oct. 1999. [3] Jye-Jong Leu, and An-Yeu Wu, “Design Methodology For Booth-Encoded Montgomery Module Design For RSA Cryptosystem,” To appear ISCAS 2000. [4] C. K. Koc, “RSA hardware implementation”, Technical Report 2, RSA Laboratories, RSA Data Security, Inc., Redwood City, CA, 1995.