1 / 30

Hadronic States with Large Multiquark Component

Investigating hadronic states with a large multiquark component - baryons and mesons. Analysis of baryon spectroscopy, decuplets, and predictions for their nature. Detection of components beyond traditional 3-quark models using experimental data.

sschafer
Download Presentation

Hadronic States with Large Multiquark Component

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hadronic States with Large Multiquark Component Bing-Song Zou ( Institute of High Energy Physics, CAS, Beijing )

  2. s n(udd) p(uud) △- △0 △+ △++ (uuu) (ddd) (udd) (uud) 0 (uds) + (uus) 0 *- *+ -(dds) I3 0 (uus) (dds) (uds) *- *0 (uss) (dss) -(dss) 0(uss) - (sss) SU(3) 3q-quark model for baryons 1/2 + spin-parity 3/2 + 1232 1385 1530 1672 Successful for spatial ground states ! Prediction m- 1670 MeV experiment m- 1672.45 0.29 MeV

  3. An outstanding problem for the classical 3q model • Mass order reverse problem for the lowest excited baryons • uud (L=1) ½ - ~ N*(1535) should be the lowest • uud (n=1) ½ + ~ N*(1440) • uds (L=1) ½ - ~ L*(1405) • harmonic oscillator ( 2n + L + 3/2 ) hw • To understand the full baryon spectroscopy, it is crucial to • understand the lowest 1/2- baryon nonet and decuplet first !

  4. `q ½ - [ud] [us] u `q ½+ [ud] [ud] u S d `q `q }L=0 }L=1 u d u d Nature of N*(1535) and its 1/2- nonet partners Zhang et al, hep-ph/0403210 N*(1535) ~ uud (L=1) + e [ud][us]`s + … N*(1440) ~ uud (n=1) + x [ud][ud]`d + … L*(1405) ~ uds (L=1) + e [ud][su]`u + … N*(1535):[ud][us]`s  larger coupling to Nh, Nh’, Nf & KL, weaker to Np & KS, and heavier ! B.C. Liu, B.S. Zou, PRL96 (2006) 042002; PRL98 (2007) 039102

  5. The new picture for the 1/2-nonet predicts: L* [us][ds]`s ~ 1575 MeV S* [us][du]`d ~ 1360 MeV very different from X* [us][ds]`u ~ 1520 MeV 3q model predictions Capstick 3q model Isgur 3q model

  6. J/y decay branching ratio * 104 `p D(1232)+ 3/2+ < 1 `S- S(1385)+ 3.1  0.5 `X+ X(1530)- 5.9  1.5 `p N*(1535)+ 1/2- 10  3 `S- S(1360)+ ? `X+ X(1520)- ? It is very important to check whether under the S(1385) and X(1520) peaks there are 1/2 - components ? Presumed 3/2 +Sc* and Xc* should also be checked. }SU(3) breaking }SU(3) allowed

  7. Nature of D*(1620) and its 1/2- 10-plet partners J.J.Xie, B.S.Zou, PLB649 (2007) 405 D*(1620)  ppN & ppnK+S+ extra-ordinary strong coupling of D*(1620) to rN  D*(1620) ½- rN molecule ? 1705 MeV S*(1750) ½- K*N molecule ? 1820 MeV X*(1950) ½-? K*L molecule ? 2010 MeV W*(2160) ½-? K*X molecule ? 2215 MeV 1/2- baryon decuplet ~ V8B8 molecules ?

  8. Conclusion `qqqqq in S-state seems more favorable than qqq with L=1 ! 1/2- baryon nonet ~`qq2q2 state + … 1/2- baryon decuplet ~ V8B8 molecules + …

  9. `qq 3S1 nonet f(1020) `ss K(892) `sd w(782) `uu +`dd r(770) `uu -`dd Similar problem for the lowest excited mesons `qq 3P0 or `q2q2 nonet ? a0(980) `uu -`dd , [`u`s ] [us] - [`d`s] [ds] f0(980) `ss , [`u`s ] [us] + [`d`s ] [ds] k(800) `sd , [`s`u ] [ud ] f0(600) `uu +`dd , [`u`d ] [ud] D*s0(2317) ~`sc (L=1) + [`q`s ] [q c] + DK + … D*s1(2460) ~`sc (L=1) + D*K + … X(3872) ~`cc (L=1) + [`q`c ] [q c] + D*D + …

  10. A possible way to distinguish the nature of a0/f0 a0(980)-f0(980) mixing

  11. `KK `q2q2 `qq Estimations from relevant measured parameters Model predictions For a very recent prediction from chiral unitary approach, cf. Hanhart, Kubis & Pelaez, arXiv:0707.0262 No firm direct observation of a0-f0 mixing available !

  12. J.J.Wu, Q.Zhao & B.S.Zou, PRD75(2007)114012 : 109 J/y events with BES3 detector + BR(J/y f f0 f a0 f hp ) ~ (2-20)*10-6 narrow 8 MeV peak ( 987.4 – 995.4 ) MeV Clear & precise determination of a0-f0 mixing !

  13. J/y fhp a0-f0 mixing BG contributions BR: a0-f0 mixing ~ (2-20)*10-6 , g* ~ 2.6*10-7 , K*K ~ (3.8 -12)*10-6

  14. Conclusion `q`q q q in S-state seems more favorable than`qq with L=1 ! The lowest L=1 light hadronic states have large multi-quark component . How about higher excited states ? Thank you !

  15. Evidence for components other than 3q in the proton Deep Inelastic Scattering (DIS) + Drell-Yan (DY) process `d –`u ~ 0.12 Garvey&Peng, Prog. Part. Nucl. Phys.47, 203 (2001) Meson cloud picture: Thomas, Speth, Weise, Oset, Brodsky, Ma, … | p > ~ | uud > + e1 | n ( udd ) p+ (`du ) > + e2 | D++ ( uuu ) p- (`ud ) > + e’ | L (uds) K+ (`su ) > … Penta-quark picture : Riska, Zou, Zhu, … | p > ~ | uud > + e1| [ud][ud]`d > + e’ | [ud][us]`s > + …

  16. From relative branching ratios of J/y p`N*  p (K-`L) / p (`ph) gN*KL /gN*ph /gN*Np ~ 2 : 2 : 1 Strange properties of N*(1535) B.C. Liu, B.S. Zou, PRL96 (2006) 042002; PRL98 (2007) 039102 Evidence for large gN*Nh’from g p  p h’ M.Dugger et al., PRL96 (2006) 062001

  17. BES Collaboration, H.B.Li, B.S.Zou, H.C.Chiang, G.X.Peng, J.X.Wang, J.J.Zhu, Phys. Lett. B510 (2001) 75

  18. N*(1535) in J/y p K-`L + c.c. Nx Nx Events/10MeV (Arbitrary normalization) PS, eff. corrected Nx BES, Int. J. Mod. Phys. A20 (2005)

  19. Evidence for large gN*KL frompp  p K+L Total cross section and theoretical results with N*(1535), N*(1650), N*(1710), N*(1720) B.C.Liu, B.S.Zou, Phys. Rev. Lett. 96 (2006) 042002 pp  p K+L Tsushima,Sibirtsev,Thomas, PRC59 (1999) 369, without including N*(1535)

  20. COSY-TOF data S. Abdel-Samad et al., Phys.Lett.B632:27(2006) Both FSI & N*(1535) are needed ! FSI N*(1650) etc. FSI vs N*(1535) contribution inpp  p K+L B.C.Liu & B.S.Zou, Phys. Rev. Lett. 98 (2007) 039102 (reply) A.Sibirtsev et al., Phys. Rev. Lett. 98 (2007) 039101 (comment)

  21. Evidence for large gN*KL from gp  K+L B. Julia-Diaz, B. Saghai, T.-S.H. Lee, F. Tabakin, Phys. Rev. C 73, 055204 (2006)

  22. G.Penner&U.Mosel, PRC66 (2002) 055212 Partial wave decomposition For the fit to SAPHIR92-94 Data Dashed line : 1/2 - Dot-dashed line : 3/2+ Shklyar,Lenske&Mosel, PRC72 (2005) 015210

  23. pp  ppf p- p  nf with FSI no FSI p-ex r-ex h-ex Evidence for large gN*Nf from p- p  nf & pp  ppf Xie, Zou & Chiang, arXiv:0705.3950 Evasion of OZI rule by N*(1535) !

  24. Evidence for small gN*KS frompp  p K+L/pp  p K+S0 A.Sibirtsev et al., EPJA29 (2006) 363 [2] P.Kowina et al., EPJA22 (2004) 293

  25. `S u S u `S S u u d d Weise, Oset et al: N*(1535) as K L-KS state, L*(1405) as KN state Pentaquark vs Meson Cloud More solid information on its coupling to KS and its 1/2- octet partner are needed !

  26. Role of D++*(1620) in ppnK+S+ J.J.Xie, B.S.Zou, PLB649 (2007) 405 Why D++* ? uuu -- the most experimentally accessible system with 3 identical valence quarks -- suggested the color degree of freedom in 1960s Why D++* (1620) ? JP = ½ - -- The lowest excited uuu state with L=1 in classical 3q models

  27. K+ D*++ p S+ p +, r + p n Why ppnK+S+ ? Our present knowledge on D++* resonances mainly comes from p+p experiments and is still very poor. ppnK+S+ -- D++* production from r+p -- accessible at COSY and CSR

  28. -- New COSY-11 data Status on the study ofppnK+S+ Resonance model Incohenrent p/K exchange model also fails to reproduce these data

  29. D*++(1620) with r+ exchange D*++(1620) with p+ D*++(1920) with p+ exchange Our calculation forppnK+S+ t-channel r-exchange plays important role !

More Related