240 likes | 359 Views
Are PCPs Inherent in Efficient Arguments?. Guy Rothblum, MIT ) MSR-SVC ) IAS Salil Vadhan, Harvard University. Probabilistic Proof Systems. P wants to convince V that x L Completeness If x L , then P convinces V w.h.p . Soundness
E N D
Are PCPs Inherentin Efficient Arguments? Guy Rothblum, MIT)MSR-SVC)IASSalil Vadhan, Harvard University
Probabilistic Proof Systems P wants to convince V that xL Completeness If xL, then P convinces Vw.h.p. Soundness If x L, no P* can convince V except w/small prob. s Interactive Proofs: no P* can convince V PCPs: no memoryless oracle P* can convince V Arguments: no poly-time P* can convince V
Motivation for Arguments • Perfect zero knowledge [BCC86] • Can be much more efficient than interactive proofs • Communication [Kil92] • Expressive power [Mic94] • Verifier runtime [Mic94] Based on PCPs Question [IKO07]: Are PCPs necessary?
Zero Knowledge Cryptography Complexity Protocols [B82,...] NP-completeness [C71,L73,K72] Def of ZK, IP [GMR85] IP=PSPACE [LFKN90,S90] NPµZK [GMW86] Secure Computation [Yao86,GMW87,BGW88,CCD88] Multiprover ZK[BGKW88] MIP=NEXPPCP Theorem[BFL91...ALMSS92] Polylog-eff ZK Args[K92,M94] Random Oracle Model [FS86,BR93,CGH98] Diagonalization [T36] Concurrency[F90,DNS98] …. Non-BB Simulation [B01] ….
High-Level Summary • Previous work [Kil92,Mic94,BG02,IKO07]:PCPs ) efficient arguments* *under various crypto assumptions • Our results:Efficient arguments ) PCPs* *assuming argument soundness based on a secure crypto primitive via an “efficient black-box reduction”
PCPs ) Arguments (previous work)
Kilian’s Construction [Kil92] (L in NP) x proverParg verifier Varg 1. choose collision-resistant hash function f f 2.¼= PCP pfthat x2 L “commit” to ¼ 3. Run Vpcpto getqueries i1,…,iq i1,…,iq “reveal” ¼i1,…,¼iq 4. Accept if reveals valid & Vpcp accepts.
Short commitments • Collision-resistant hash family:F = {f : {0,1}2k! {0,1}k} s.t. no poly-time alg can find collision in random fà F except with negl. probability. • Merkle Tree: ¼i ¼ f f f f f f Reveal(¼i) f Commit(¼)
Kilian: communication # rounds: O(1) V! P communication: (# queries)¢ log(PCP length) + k = O~(log n) P!V communication: (# queries) ¢ [log(PCP length) ¢ k + log |PCP alphabet|] = O~(log2 n) Parg Varg f Commit(¼) i1,…,iq Reveal(¼i1,…,¼iq) (assuming standard PCP thm + exponentially hard CRHF)
Kilian: soundness Claim: argument soundness error· PCP soundness error + ² Proof sketch:If not, can find collision in f w.p. > ²/q by running P* w/ two random overlapping query sequences i1,…,iq , i’1,…,i’q . N.B. “black-box” reduction making 3 queries to P* P* Varg f Commit(¼) i1,…,iq Reveal(¼i1,…,¼iq)
Ishai-Kushilevitz-Ostrovsky `07 “Efficient” arguments using: • Stronger crypto primitive (homomorphic encryption) • Weaker PCP (exponentially long Hadamard-based PCP [ALMSS92])
IKO: communication # rounds: O(1) V! P communication: (# queries)¢ log(PCP length) + k = poly(n) P!V communication: (# queries) ¢ [log(PCP length) ¢ k + log |PCP alphabet|] = O~(log n) Parg Varg f Hom-Commit(¼) i1,…,iq Hom-Reveal(¼i1,…,¼iq) (assuming Hadamard PCP + exponentially hard hom-enc)
Arguments ) PCPs (our work)
Main Result Argument system (Varg,Parg) w/soundness based on a crypto primitive via a black-box reduction R PCP with following parameters: #Queries: #rounds (Varg,Parg) + #queries(R) Length: exp(Varg→Parg communication) Alphabet: exp(Parg→Varg communication) Soundness unconditional Completeness assuming the crypto primitive is secure Matches [Kil92,IKO07]
Notion of Black-Box Reduction • poly-time R s.t. if P* is any strategy making Vargaccept xLw.p. > s, then RP*(x) “breaks” primitive w.p. > ² • poly-time T that tests whether R has broken primitive (related to “falsifiability” [Nao06]) x R P* T # queries(R) := # queries to P* in TRP*(x)
Example: Kilian’s construction x f f Commit(¼) repeat poly(1/²) times f, i1,…,iq R P* T Reveal(¼i1,…,¼iq) f, i’1,…,i’q Reveal(¼i’1,…,¼i’q) collision a,b
Example: construction based on factoring x N R P* T factors p,q
Main Result Argument system (Varg,Parg) w/soundness based on a crypto primitive via a black-box reduction R PCP with following parameters: #Queries: #rounds (Varg,Parg) + #queries(R&T) Length: exp(Varg→Parg communication) Alphabet: exp(Parg→Varg communication) Soundness unconditional Completeness assuming the crypto primitive is secure Matches [Kil92,IKO07]
Argument PCP: Construction (Honest) PCP proof-oracle Ppcp: next-msg function of argument proverParg PCP Verifier: Run Vargwith Ppcp. If Vargrejects, reject. Run reduction R (& test T) with Ppcp.If break primitive, then reject. Otherwise accept.
Argument PCP: Soundness PCP Verifier: Run Vargwith Ppcp. If Vargrejects, reject. Run reduction R (& test T) with Ppcp.If break primitive, then reject. Otherwise accept. Soundness (xL): IfP* makes Vargaccept whp in Step 1, then RP*(x) “breaks” primitive.
Argument PCP: Completeness PCP Verifier: Run Vargwith Ppcp. If Vargrejects, reject. Run reduction R (& test T) with Ppcp.If break primitive, then reject. Otherwise accept. Completeness (x2L): Reduction R and honest Ppcp=Pargare poly-time, so can’t break secure primitive.
Argument PCP: Efficiency PCP Verifier: Run Vargwith Ppcp. If Vargrejects, reject. Run reduction R (& test T) with Ppcp.If break primitive, then reject. Otherwise accept. #Queries: #rounds (Varg,Parg) + #queries(R&T) Length: exp(Varg→Parg communication) Alphabet: exp(Parg→Varg communication)
Weakening the Assumptions • Only need crypto primitive secure vs. fixed poly-time adversary (namely RParg). • If honest Pargonly makes black-box access to primitive, can sometimes weaken or eliminate assumptions using Nisan-Wigderson-type PRFs or poly(n)-wise independent hash functions.
Conclusions & Questions We explain why existing efficient arguments use PCPs. • Efficient arguments without PCPs? (Using reduction that is either non-black-box or makes many queries to cheating prover) • New PCP constructions inspired by crypto? • Deeper connection between arguments & PCPs? • Do arguments in random oracle model require PCPs?